|   | 
Details
   web
Records
Author Bertone, G.; Kong, K.C.; Ruiz de Austri, R.; Trotta, R.
Title (up) Global fits of the minimal universal extra dimensions scenario Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 3 Pages 036008 - 15pp
Keywords
Abstract In theories with universal extra dimensions (UED), the gamma(1) particle, first excited state of the hypercharge gauge boson, provides an excellent dark matter (DM) candidate. Here, we use a modified version of the SUPERBAYES code to perform a Bayesian analysis of the minimal UED scenario, in order to assess its detectability at accelerators and with DM experiments. We derive, in particular, the most probable range of mass and scattering cross sections off nucleons, keeping into account cosmological and electroweak precision constraints. The consequences for the detectability of the gamma(1) with direct and indirect experiments are dramatic. The spin-independent cross section probability distribution peaks at similar to 10(-11) pb, i.e. below the sensitivity of ton-scale experiments. The spin-dependent cross section drives the predicted neutrino flux from the center of the Sun below the reach of present and upcoming experiments. The only strategy that remains open appears to be direct detection with ton-scale experiments sensitive to spin-dependent cross sections. On the other hand, the LHC with 1 fb(-1) of data should be able to probe the current best-fit UED parameters.
Address [Bertone, Gianfranco] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000287655300012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 567
Permanent link to this record
 

 
Author Roszkowski, L.; Ruiz de Austri, R.; Trotta, R.; Tsai, Y.L.S.; Varley, T.A.
Title (up) Global fits of the nonuniversal Higgs model Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 1 Pages 015014 - 19pp
Keywords
Abstract We carry out global fits to the nonuniversal Higgs Model (NUHM), applying all relevant present-day constraints. We present global probability maps for the NUHM parameters and observables (including collider signatures, direct, and indirect detection quantities), both in terms of posterior probabilities and in terms of profile likelihood maps. We identify regions of the parameter space where the neutralino dark matter in the model is either binolike, or else higgsinolike with mass close to 1 TeV and a spin-independent scattering cross section similar to 10(-9)-10(-8) pb. We trace the occurrence of the higgsinolike region to be a consequence of a mild focusing effect in the running of one of the Higgs masses, the existence of which in the NUHM we identify in our analysis. Although the usual binolike neutralino is more prominent, higgsinolike dark matter cannot be excluded, however its significance strongly depends on the prior and statistics used to assess it. We note that, despite experimental constraints often favoring different regions of parameter space to the constrained minimal supersymmetric standard model, most observational consequences appear fairly similar, which will make it challenging to distinguish the two models experimentally.
Address [Roszkowski, Leszek; Tsai, Yue-Lin Sming; Varley, Tom A.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England, Email: L.Roszkowski@sheffield.ac.uk
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000286765800007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 586
Permanent link to this record
 

 
Author Ferrer-Sanchez, A.; Martin-Guerrero, J.; Ruiz de Austri, R.; Torres-Forne, A.; Font, J.A.
Title (up) Gradient-annihilated PINNs for solving Riemann problems: Application to relativistic hydrodynamics Type Journal Article
Year 2024 Publication Computer Methods in Applied Mechanics and Engineering Abbreviated Journal Comput. Meth. Appl. Mech. Eng.
Volume 424 Issue Pages 116906 - 18pp
Keywords Riemann problem; Euler equations; Machine learning; Neural networks; Relativistic hydrodynamics
Abstract We present a novel methodology based on Physics-Informed Neural Networks (PINNs) for solving systems of partial differential equations admitting discontinuous solutions. Our method, called Gradient-Annihilated PINNs (GA-PINNs), introduces a modified loss function that forces the model to partially ignore high-gradients in the physical variables, achieved by introducing a suitable weighting function. The method relies on a set of hyperparameters that control how gradients are treated in the physical loss. The performance of our methodology is demonstrated by solving Riemann problems in special relativistic hydrodynamics, extending earlier studies with PINNs in the context of the classical Euler equations. The solutions obtained with the GA-PINN model correctly describe the propagation speeds of discontinuities and sharply capture the associated jumps. We use the relative l(2) error to compare our results with the exact solution of special relativistic Riemann problems, used as the reference ''ground truth'', and with the corresponding error obtained with a second-order, central, shock-capturing scheme. In all problems investigated, the accuracy reached by the GA-PINN model is comparable to that obtained with a shock-capturing scheme, achieving a performance superior to that of the baseline PINN algorithm in general. An additional benefit worth stressing is that our PINN-based approach sidesteps the costly recovery of the primitive variables from the state vector of conserved variables, a well-known drawback of grid-based solutions of the relativistic hydrodynamics equations. Due to its inherent generality and its ability to handle steep gradients, the GA-PINN methodology discussed in this paper could be a valuable tool to model relativistic flows in astrophysics and particle physics, characterized by the prevalence of discontinuous solutions.
Address [Ferrer-Sanchez, Antonio; Martin-Guerrero, JoseD.] ETSE UV, Elect Engn Dept, IDAL, Avgda Univ S-N, Valencia 46100, Spain, Email: Antonio.Ferrer-Sanchez@uv.es
Corporate Author Thesis
Publisher Elsevier Science Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-7825 ISBN Medium
Area Expedition Conference
Notes WOS:001221797400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6126
Permanent link to this record
 

 
Author Allanach, B.C.; Bednyakov, A.; Ruiz de Austri, R.
Title (up) Higher order corrections and unification in the minimal supersymmetric standard model: SOFTSUSY3.5 Type Journal Article
Year 2015 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 189 Issue Pages 192-206
Keywords Sparticle; MSSM
Abstract We explore the effects of three-loop minimal supersymmetric standard model renormalisation group equation terms and some leading two-loop threshold corrections on gauge and Yukawa unification: each being one loop higher order than current public spectrum calculators. We also explore the effect of the higher order terms (often 2-3 GeV) on the lightest CP even Higgs mass prediction. We illustrate our results in the constrained minimal supersymmetric standard model. Neglecting threshold corrections at the grand unified scale, the discrepancy between the unification scale alpha(s) and the other two unified gauge couplings changes by 0.1% due to the higher order corrections and the difference between unification scale bottom-tau Yukawa couplings neglecting unification scale threshold corrections changes by up to 1%. The difference between unification scale bottom and top Yukawa couplings changes by a few percent. Differences due to the higher order corrections also give an estimate of the size of theoretical uncertainties in the minimal supersymmetric standard model spectrum. We use these to provide estimates of theoretical uncertainties in predictions of the dark matter relic density (which can be of order one due to its strong dependence on sparticle masses) and the LHC sparticle production cross-section (often around 30%). The additional higher order corrections have been incorporated into SOFTSUSY, and we provide details on how to compile and use the program. We also provide a summary of the approximations used in the higher order corrections. Program Summary Nature of problem: Calculating supersymmetric particle spectrum and mixing parameters in the minimal supersymmetric standard model. The solution to the renormalisation group equations must be consistent with boundary conditions on supersymmetry breaking parameters, as well as the weak-scale boundary condition on gauge couplings, Yukawa couplings and the Higgs potential parameters. Program title: SOFTSUSY Catalogue identifier: ADPMv50 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADPMv50.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 240528 No. of bytes in distributed program, including test data, etc.: 2597933 Distribution format: tar.gz Programming language: C++, Fortran. Computer: Personal computer. Operating system: Tested on Linux 3.4.6. Word size: 64 bits. Classification: 11.1, 11.6. External routines: At least GiNaC1.3.5 [1] and CLN1.3.1 (both freely obtainable from http://www.ginac.de). Does the new version supersede the previous version?: Yes Catalogue identifier of previous version: ADPMv40 Journal reference of previous version: Comput. Phys. Comm. 185 (2014) 2322 Solution method: Nested iterative algorithm. Reasons for new version: Extension to include additional two and three-loop terms. Summary of revisions: All quantities in the minimal supersymmetric standard model are extended to have three-loop renormalisation group equations (including 3-family mixing) in the limit of real parameters and some leading two-loop threshold corrections are incorporated to the third family Yukawa couplings and the strong gauge coupling. Restrictions: SOFTSUSY will provide a solution only in the perturbative regime and it assumes that all couplings of the model are real (i.e. CP-conserving). If the parameter point under investigation is non-physical for some reason (for example because the electroweak potential does not have an acceptable minimum), SOFTSUSY returns an error message. The higher order corrections included are for the real R-parity conserving minimal supersymmetric standard model (MSSM) only. Running time: A minute per parameter point. The tests provided with the package only take a few seconds to run.
Address [Allanach, B. C.] Univ Cambridge, DAMTP, CMS, Cambridge CB3 0WA, England, Email: rruiz@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000350087300021 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2142
Permanent link to this record
 

 
Author Cabrera, M.E.; Casas, J.A.; Mitsou, V.A.; Ruiz de Austri, R.; Terron, J.
Title (up) Histogram comparison tools for the search of new physics at LHC. Application to the CMSSM Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 133 - 27pp
Keywords Beyond Standard Model; Supersymmetric Standard Model; Statistical Methods
Abstract We propose a rigorous and effective way to compare experimental and theoretical histograms, incorporating the different sources of statistical and systematic uncertainties. This is a useful tool to extract as much information as possible from the comparison between experimental data with theoretical simulations, optimizing the chances of identifying New Physics at the LHC. We illustrate this by showing how a search in the CMSSM parameter space, using Bayesian techniques, can effectively find the correct values of the CMSSM parameters by comparing histograms of events with multijets + missing transverse momentum displayed in the effective-mass variable. The procedure is in fact very efficient to identify the true supersymmetric model, in the case supersymmetry is really there and accessible to the LHC.
Address [Eugenia Cabrera, Maria; Alberto Casas, J.] UAM, IFT UAM CSIC, Inst Fis Teor, E-28049 Madrid, Spain, Email: maria.cabrera@uam.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000304148100059 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1053
Permanent link to this record