Real, D., & Calvo, D. (2022). Production requirements and functional tests of the KM3NeT Digital Optical Module Power Board. Nucl. Instrum. Methods Phys. Res. A, 1042, 167426–3pp.
Abstract: The KM3NeT research facility is being built in the Mediterranean Sea. It consists of matrices of optical detectors, the so-called Digital Optical Module. Each of this elementary detector holds a set of 31 small-area photomultipliers, which detect the Cherenkov light generated by secondary particles produced in neutrino interactions. It includes also the acquisition electronics and the power board which supplies both, the acquisition electronics and the photomultipliers. The production of electronics boards needs to have a high quality and reliability level as it is going to be deployed for more than ten years without any maintenance possible. This work presents the requirements and the qualification tests being implemented in order to increase the reliability of the Power Board of the acquisition electronics of KM3NeT during the mass production. At the moment, more than one thousand board have been produced. Results on the production of the boards, including the production yield is presented. From the already produced boards, more than 350 have been already deployed and are operative in the detectors.
|
Unbehaun, T. et al(C. T. A. C. and K. M. 3N. T. C.), Alves Garre, S., Calvo, D., Carretero, V., Cecchini, V., Garcia Soto, A., et al. (2024). Prospects for combined analyses of hadronic emission from γ-ray sources in the Milky Way with CTA and KM3NeT. Eur. Phys. J. C, 84(2), 112–19pp.
Abstract: The Cherenkov Telescope Array and the KM3NeT neutrino telescopes are major upcoming facilities in the fields of gamma-ray and neutrino astronomy, respectively. Possible simultaneous production of gamma rays and neutrinos in astrophysical accelerators of cosmic-ray nuclei motivates a combination of their data. We assess the potential of a combined analysis of CTA and KM3NeT data to determine the contribution of hadronic emission processes in known Galactic gamma-ray emitters, comparing this result to the cases of two separate analyses. In doing so, we demonstrate the capability of GAMMAPY, an open-source software package for the analysis of gamma-ray data, to also process data from neutrino telescopes. For a selection of prototypical gamma-ray sources within our Galaxy, we obtain models for primary proton and electron spectra in the hadronic and leptonic emission scenario, respectively, by fitting published gamma-ray spectra. Using these models and instrument response functions for both detectors, we employ the GAMMAPY package to generate pseudo data sets, where we assume 200 h of CTA observations and 10 years of KM3NeT detector operation. We then apply a three-dimensional binned likelihood analysis to these data sets, separately for each instrument and jointly for both. We find that the largest benefit of the combined analysis lies in the possibility of a consistent modelling of the gamma-ray and neutrino emission. Assuming a purely leptonic scenario as input, we obtain, for the most favourable source, an average expected 68% credible interval that constrains the contribution of hadronic processes to the observed gamma-ray emission to below 15%.
|
Real, D., Ballester, J., Calvo, D., Manzaneda, M., Moreno, A., Albiol, F., et al. (2025). Readout System for Multipurpose Real-Time and Portable Spectrometer. Electronics, 14(3), 506–21pp.
Abstract: A ready-to-use spectrometer-based product, which focuses on data acquisition using a BeagleBone board and a Hamamatsu C12666MA spectrometer module, is presented. The device meets stringent requirements, including the ability to measure the visible light spectrum over a wide range of intensities, being compact and lightweight, and having customizable electronics to suit different application needs. The system's primary component is a Hamamatsu C12666MA spectrometer module with a measurement range of 341 nm to 780 nm, which is supplemented by supporting electronics such as a microcontroller and an analog-to-digital converter. The development encompasses hardware design, the fabrication of a control board, and software development for spectral acquisition and visualization. The software controls the spectral measurement process and facilitates data processing and analysis. The results demonstrate that the designed system can accurately capture spectra and fulfill the specified requirements. Additionally, this work investigates and evaluates the potential migration of the data acquisition system to Field-Programmable Gate Array technology. Such a migration offers several advantages, including real-time processing, parallel data handling capabilities, reduced latency, and greater flexibility in adapting to various spectrometer configurations, as well as the possibility to work in a synchronized way with other devices. These improvements would significantly expand the system's potential applications in real-time spectroscopy and other demanding optical measurement tasks. The proposed system thus provides a foundation for future enhancements, which could exploit Field-Programmable Gate Array technology, potentially revolutionizing the efficiency and application scope of portable spectrometry devices.
|
ANTARES Collaboration(Albert, A. et al), Alves, S., Calvo, D., Carretero, V., Gozzini, R., Hernandez-Rey, J. J., et al. (2024). Results of the follow-up of ANTARES neutrino alerts. J. Cosmol. Astropart. Phys., 09(9), 042–33pp.
Abstract: High-energy neutrinos could be produced in the interaction of charged cosmic rays with matter or radiation surrounding astrophysical sources. To look for transient sources associated with neutrino emission, a follow-up program of neutrino alerts has been operating within the ANTARES collaboration since 2009. This program, named TAToO, has triggered robotic optical telescopes (MASTER, TAROT, ROTSE and the SVOM ground based telescopes) immediately after the detection of any relevant neutrino candidate and scheduled several observations in the weeks following the detection. A subset of ANTARES events with highest probabilities of being of cosmic origin has also been followed by the Swift and the INTEGRAL satellites, the Murchison Widefield Array radio telescope and the H.E.S.S. high-energy gamma-ray telescope. The results of twelve years of observations are reported. In September 2015, ANTARES issued a neutrino alert and during the follow-up, a potential transient counterpart was identified by Swift and MASTER. A multi-wavelength follow-up campaign has allowed to identify the nature of this source and has proven its fortuitous association with the neutrino. No other optical and X-ray counterpart has been significantly associated with an ANTARES candidate neutrino signal. Constraints on transient neutrino emission have been set. The return of experience is particularly important for the design of the alert system of KM3NeT, the next generation neutrino telescope in the Mediterranean Sea.
|
ANTARES Collaboration(Albert, A. et al), Alves, S., Calvo, D., Carretero, V., Gozzini, R., Hernandez-Rey, J. J., et al. (2023). Review of the online analyses of multi-messenger alerts and electromagnetic transient events with the ANTARES neutrino telescope. J. Cosmol. Astropart. Phys., 08(8), 072–23pp.
Abstract: By constantly monitoring a very large portion of the sky, neutrino telescopes are well-designed to detect neutrinos emitted by transient astrophysical events. Real-time searches with the ANTARES telescope have been performed to look for neutrino candidates coincident with gamma-ray bursts detected by the Swift and Fermi satellites, high-energy neutrino events registered by IceCube, transient events from blazars monitored by HAWC, photon-neutrino coincidences by AMON notices and gravitational wave candidates observed by LIGO/Virgo. By requiring temporal coincidence, this approach increases the sensitivity and the significance of a potential discovery. This paper summarises the results of the followup performed of the ANTARES telescope between January 2014 and February 2022, which corresponds to the end of the data-taking period.
|
Hernandez-Rey, J. J., Ardid, M., Bou Cabo, M., Calvo, D., Diaz, A. F., Gozzini, S. R., et al. (2022). Science with Neutrino Telescopes in Spain. Universe, 8(2), 89–25pp.
Abstract: The primary scientific goal of neutrino telescopes is the detection and study of cosmic neutrino signals. However, the range of physics topics that these instruments can tackle is exceedingly wide and diverse. Neutrinos coming from outside the Earth, in association with other messengers, can contribute to clarify the question of the mechanisms that power the astrophysical accelerators which are known to exist from the observation of high-energy cosmic and gamma rays. Cosmic neutrinos can also be used to bring relevant information about the nature of dark matter, to study the intrinsic properties of neutrinos and to look for physics beyond the Standard Model. Likewise, atmospheric neutrinos can be used to study an ample variety of particle physics issues, such as neutrino oscillation phenomena, the determination of the neutrino mass ordering, non-standard neutrino interactions, neutrino decays and a diversity of other physics topics. In this article, we review a selected number of these topics, chosen on the basis of their scientific relevance and the involvement in their study of the Spanish physics community working in the KM3NeT and ANTARES neutrino telescopes.
|
AMON Team, A. N. T. A. R. E. S. and H. A. W. C. C.(A. S., H.A. et al), Alves Garres, S., Calvo, D., Carretero, V., Gozzini, R., Hernandez-Rey, J. J., et al. (2023). Search for Gamma-Ray and Neutrino Coincidences Using HAWC and ANTARES Data. Astrophys. J., 944(2), 166–9pp.
Abstract: In the quest for high-energy neutrino sources, the Astrophysical Multimessenger Observatory Network has implemented a new search by combining data from the High Altitude Water Cherenkov (HAWC) Observatory and the Astronomy with a Neutrino Telescope and Abyss environmental RESearch (ANTARES) neutrino telescope. Using the same analysis strategy as in a previous detector combination of HAWC and IceCube data, we perform a search for coincidences in HAWC and ANTARES events that are below the threshold for sending public alerts in each individual detector. Data were collected between 2015 July and 2020 February with a live time of 4.39 yr. Over this time period, three coincident events with an estimated false-alarm rate of <1 coincidence per year were found. This number is consistent with background expectations.
|
ANTARES Collaboration(Albert, A. et al), Alves, S., Calvo, D., Carretero, V., Gozzini, R., Hernandez-Rey, J. J., et al. (2023). Search for neutrino counterparts to the gravitational wave sources from LIGO/Virgo O3 run with the ANTARES detector. J. Cosmol. Astropart. Phys., 04(4), 004–19pp.
Abstract: Since 2015 the LIGO and Virgo interferometers have detected gravitational waves from almost one hundred coalescences of compact objects (black holes and neutron stars). This article presents the results of a search performed with data from the ANTARES telescope to identify neutrino counterparts to the gravitational wave sources detected during the third LIGO/Virgo observing run and reported in the catalogues GWTC-2, GWTC-2.1, and GWTC-3. This search is sensitive to all-sky neutrinos of all flavours and of energies > 100 GeV, thanks to the inclusion of both track-like events (mainly induced by v μcharged -current interactions) and shower-like events (induced by other interaction types). Neutrinos are selected if they are detected within +/- 500 s from the GW merger and with a reconstructed direction compatible with its sky localisation. No significant excess is found for any of the 80 analysed GW events, and upper limits on the neutrino emission are derived. Using the information from the GW catalogues and assuming isotropic emission, upper limits on the total energy Etot,v emitted as neutrinos of all flavours and on the ratio fv = Etot,v/EGW between neutrino and GW emissions are also computed. Finally, a stacked analysis of all the 72 binary black hole mergers (respectively the 7 neutron star-black hole merger candidates) has been performed to constrain the typical neutrino emission within this population, leading to the limits: Etot,v < 4.0 x 1053 erg and fv < 0.15 (respectively, Etot,v < 3.2 x 1053 erg and fv < 0.88) for E-2 spectrum and isotropic emission. Other assumptions including softer spectra and non-isotropic scenarios have also been tested.
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Bariego-Quintana, A., Calvo, D., Cecchini, V., Garcia Soto, A., et al. (2024). Search for neutrino emission from GRB 221009A using the KM3NeT ARCA and ORCA detectors. J. Cosmol. Astropart. Phys., 08(8), 006–16pp.
Abstract: Gamma-ray bursts are promising candidate sources of high-energy astrophysical neutrinos. The recent GRB 221009A event, identified as the brightest gamma-ray burst ever detected, provides a unique opportunity to investigate hadronic emissions involving neutrinos. The KM3NeT undersea neutrino detectors participated in the worldwide follow-up effort triggered by the event, searching for neutrino events. In this paper, we summarize subsequent searches, in a wide energy range from MeV up to a few PeVs. No neutrino events are found in any of the searches performed. Upper limits on the neutrino emission associated with GRB 221009A are computed.
|
ANTARES Collaboration(Albert, A. et al), Alves, S., Calvo, D., Carretero, V., Gozzini, R., Hernandez-Rey, J. J., et al. (2022). Search for non-standard neutrino interactions with 10 years of ANTARES data. J. High Energy Phys., 07(7), 048–22pp.
Abstract: Non-standard interactions of neutrinos arising in many theories beyond the Standard Model can significantly alter matter effects in atmospheric neutrino propagation through the Earth. In this paper, a search for deviations from the prediction of the standard 3-flavour atmospheric neutrino oscillations using the data taken by the ANTARES neutrino telescope is presented. Ten years of atmospheric neutrino data collected from 2007 to 2016, with reconstructed energies in the range from similar to 16 GeV to 100 GeV, have been analysed. A log-likelihood ratio test of the dimensionless coefficients epsilon(mu tau) and epsilon(tau tau) – epsilon(mu mu) does not provide clear evidence of deviations from standard interactions. For normal neutrino mass ordering, the combined fit of both coefficients yields a value 1.7 sigma away from the null result. However, the 68% and 95% confidence level intervals for epsilon(mu tau) and epsilon(tau tau) – epsilon(mu mu), respectively, contain the null value. Best fit values, one standard deviation errors and bounds at the 90% confidence level for these coefficients are given for both normal and inverted mass orderings. The constraint on epsilon(mu tau) is among the most stringent to date and it further restrains the strength of possible non-standard interactions in the μ- tau sector.
|