toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Nascimento, J.R.; Olmo, G.J.; Porfirio, P.J.; Petrov, A.Y.; Soares, A.R. url  doi
openurl 
  Title (up) Global monopole in Palatini f(R) gravity Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 6 Pages 064053 - 11pp  
  Keywords  
  Abstract We consider the space-time metric generated by a global monopole in an extension of general relativity (GR) of the form f(R) = R – lambda R-2. The theory is formulated in the metric-affine (or Palatini) formalism, and exact analytical solutions are obtained. For lambda < 0, one finds that the solution has the same characteristics as the Schwarzschild black hole with a monopole charge in Einstein's GR. For lambda > 0, instead, the metric is more closely related to the Reissner-Nordstrom metric with a monopole charge and, in addition, it possesses a wormhole-like structure that allows for the geodesic completeness of the spacetime. Our solution recovers the expected limits when lambda = 0 and also at the asymptotic far limit. The angular deflection of light in this space-time in the weak field regime is also calculated.  
  Address [Nascimento, J. R.; Petrov, A. Yu; Soares, A. R.] Univ Fed Paraiba, Dept Fis, Caixa Postal 5008, BR-58051970 Joao Pessoa, Paraiba, Brazil, Email: jroberto@fisica.ufpb.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000462920100010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3966  
Permanent link to this record
 

 
Author Forero, D.V.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title (up) Global status of neutrino oscillation parameters after Neutrino-2012 Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 86 Issue 7 Pages 073012 - 8pp  
  Keywords  
  Abstract Here we update the global fit of neutrino oscillations in Refs. [T. Schwetz, M. Tortola, and J. W. F. Valle, New J. Phys. 13, 063004 (2011); T. Schwetz, M. Tortola, and J. W. F. Valle, New J. Phys. 13, 109401 (2011)] including the recent measurements of reactor antineutrino disappearance reported by the Double Chooz, Daya Bay, and RENO experiments, together with latest MINOS and T2K appearance and disappearance results, as presented at the Neutrino-2012 conference. We find that the preferred global fit value of theta(13) is quite large: sin(2)theta(13) similar or equal to 0.025 for normal and inverted neutrino mass ordering, with theta(13) = 0 now excluded at more than 10 sigma. The impact of the new theta(13) measurements over the other neutrino oscillation parameters is discussed as well as the role of the new long-baseline neutrino data and the atmospheric neutrino analysis in the determination of a non-maximal atmospheric angle theta(23).  
  Address [Forero, D. V.; Tortola, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: dvanegas@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000309999100003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1193  
Permanent link to this record
 

 
Author Ibañez, D.; Papavassiliou, J. url  doi
openurl 
  Title (up) Gluon mass generation in the massless bound-state formalism Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 3 Pages 034008 - 25pp  
  Keywords  
  Abstract We present a detailed, all-order study of gluon mass generation within the massless bound-state formalism, which constitutes the general framework for the systematic implementation of the Schwinger mechanism in non-Abelian gauge theories. The main ingredient of this formalism is the dynamical formation of bound states with vanishing mass, which give rise to effective vertices containing massless poles; these latter vertices, in turn, trigger the Schwinger mechanism, and allow for the gauge-invariant generation of an effective gluon mass. This particular approach has the conceptual advantage of relating the gluon mass directly to quantities that are intrinsic to the bound-state formation itself, such as the “transition amplitude'' and the corresponding ”bound-state wave function.'' As a result, the dynamical evolution of the gluon mass is largely determined by a Bethe-Salpeter equation that controls the dynamics of the relevant wave function, rather than the Schwinger-Dyson equation of the gluon propagator, as happens in the standard treatment. The precise structure and field-theoretic properties of the transition amplitude are scrutinized in a variety of independent ways. In particular, a parallel study within the linear-covariant (Landau) gauge and the background-field method reveals that a powerful identity, known to be valid at the level of conventional Green's functions, also relates the background and quantum transition amplitudes. Despite the differences in the ingredients and terminology employed, the massless bound-state formalism is absolutely equivalent to the standard approach based on Schwinger-Dyson equations. In fact, a set of powerful relations allows one to demonstrate the exact coincidence of the integral equations governing the momentum evolution of the gluon mass in both frameworks.  
  Address [Ibanez, D.] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314684900003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1327  
Permanent link to this record
 

 
Author Aguilar, A.C.; Binosi, D.; Papavassiliou, J. url  doi
openurl 
  Title (up) Gluon mass generation in the presence of dynamical quarks Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 88 Issue 7 Pages 074010 - 12pp  
  Keywords  
  Abstract We study in detail the impact of dynamical quarks on the gluon mass generation mechanism, in the Landau gauge, for the case of a small number of quark families. As in earlier considerations, we assume that the main bulk of the unquenching corrections to the gluon propagator originates from the fully dressed quark-loop diagram. The nonperturbative evaluation of this diagram provides the key relation that expresses the unquenched gluon propagator as a deviation from its quenched counterpart. This relation is subsequently coupled to the integral equation that controls the momentum evolution of the effective gluon mass, which contains a single adjustable parameter; this constitutes a major improvement compared to the analysis presented in Aguilar et al. [Phys. Rev. D 86, 014032 (2012)], where the behavior of the gluon propagator in the deep infrared was estimated through numerical extrapolation. The resulting nonlinear system is then treated numerically, yielding unique solutions for the modified gluon mass and the quenched gluon propagator, which fully confirms the picture put forth recently in several continuum and lattice studies. In particular, an infrared finite gluon propagator emerges, whose saturation point is considerably suppressed, due to a corresponding increase in the value of the gluon mass. This characteristic feature becomes more pronounced as the number of active quark families increases, and can be deduced from the infrared structure of the kernel entering in the gluon mass equation.  
  Address [Aguilar, A. C.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000326039300007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1637  
Permanent link to this record
 

 
Author Aguilar, A.C.; Papavassiliou, J. url  doi
openurl 
  Title (up) Gluon mass generation without seagull divergences Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 3 Pages 034003 - 19pp  
  Keywords  
  Abstract Dynamical gluon mass generation has been traditionally plagued with seagull divergences, and all regularization procedures proposed over the years yield finite but scheme-dependent gluon masses. In this work we show how such divergences can be eliminated completely by virtue of a characteristic identity, valid in dimensional regularization. The ability to trigger the aforementioned identity hinges crucially on the particular Ansatz employed for the three-gluon vertex entering into the Schwinger-Dyson equation governing the gluon propagator. The use of the appropriate three-gluon vertex brings about an additional advantage: one obtains two separate (but coupled) integral equations, one for the effective charge and one for the gluon mass. This system of integral equations has a unique solution, which unambiguously determines these two quantities. Most notably, the effective charge freezes in the infrared, and the gluon mass displays power-law running in the ultraviolet, in agreement with earlier considerations.  
  Address [Aguilar, Arlene C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000275069000024 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 493  
Permanent link to this record
 

 
Author Aguilar, A.C.; Ferreira, M.N.; Figueiredo, C.T.; Papavassiliou, J. url  doi
openurl 
  Title (up) Gluon mass scale through nonlinearities and vertex interplay Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 9 Pages 094039 - 19pp  
  Keywords  
  Abstract We present a novel analysis of the gluon gap equation, where its full nonlinear structure is duly taken into account. In particular, while in previous treatments the linearization of this homogeneous integral equation introduced an indeterminacy in the scale of the corresponding mass, the current approach determines it uniquely, once the value of the gauge coupling at a given renormalization point is used as input. A crucial ingredient for this construction is the “kinetic term” of the gluon propagator, whose form is not obtained from the complicated equation governing its evolution, but is rather approximated by suitable initial Ansatze, which are subsequently improved by means of a systematic iterative procedure. The multiplicative renormalization of the central equation is carried out following an approximate method, which is extensively employed in the studies of the standard quark gap equation. This approach amounts to the effective substitution of the vertex renormalization constants by kinematically simplified form factors of the three- and four-gluon vertices. The resulting numerical interplay, exemplified by the infrared suppression of the three-gluon vertex and the mild enhancement of the four-gluon vertex, is instrumental for obtaining positive-definite and monotonically decreasing running gluon masses. The resulting gluon propagators, put together from the gluon masses and kinetic terms obtained with this method, match rather accurately the data obtained from large-volume lattice simulations.  
  Address [Aguilar, A. C.; Ferreira, M. N.; Figueiredo, C. T.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000498877900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4208  
Permanent link to this record
 

 
Author Kochelev, N.I.; Vento, V. url  doi
openurl 
  Title (up) Gluonic components of the pion and the transition form factor gamma*gamma* -> pi(0) Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 3 Pages 034009 - 5pp  
  Keywords  
  Abstract We propose an effective Lagrangian for the coupling of the neutral pion with gluons whose strength is determined by a low-energy theorem. We calculate the contribution of the gluonic components arising from this interaction to the pion transition form factor gamma*gamma* -> pi(0) using the instanton liquid model to describe the quantum chromodynamics vacuum. We find that this contribution is large and might explain the anomalous behavior of the form factor at large virtuality of one of the photons, a feature which was recently discovered by the BABAR Collaboration.  
  Address [Kochelev, N. I.] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Moscow Region, Russia, Email: kochelev@theor.jinr.ru  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000275069000030 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 495  
Permanent link to this record
 

 
Author Bayes, R.; Laing, A.; Soler, F.J.P.; Cervera-Villanueva, A.; Gomez-Cadenas, J.J.; Hernandez, P.; Martin-Albo, J.; Burguet-Castell, J. url  doi
openurl 
  Title (up) Golden channel at a neutrino factory revisited: Improved sensitivities from a magnetized iron neutrino detector Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 86 Issue 9 Pages 093015 - 27pp  
  Keywords  
  Abstract This paper describes the performance and sensitivity to neutrino mixing parameters of a Magnetised Iron Neutrino Detector at a Neutrino Factory with a neutrino beam created from the decay of 10 GeV muons. Specifically, it is concerned with the ability of such a detector to detect muons of the opposite sign to those stored (wrong-sign muons) while suppressing contamination of the signal from the interactions of other neutrino species in the beam. A new, more realistic simulation and analysis, which improves the efficiency of this detector at low energies, has been developed using the GENIE neutrino event generator and the GEANT4 simulation toolkit. Low-energy neutrino events down to 1 GeV were selected, while reducing backgrounds to the 10(-4) level. Signal efficiency plateaus of similar to 60% for nu(mu) and similar to 70% for (nu) over bar (mu) events were achieved starting at similar to 5 GeV. Contamination from the nu(mu) -> nu(tau) oscillation channel was studied for the first time and was found to be at the level between 1% and 4%. Full response matrices are supplied for all the signal and background channels from 1 GeV to 10 GeV. The sensitivity of an experiment involving a Magnetised Iron Neutrino Detector detector of 100 ktons at 2000 km from the Neutrino Factory is calculated for the case of sin(2)2 theta(13) similar to 10(-1). For this value of theta(13), the accuracy in the measurement of the CP-violating phase is estimated to be Delta delta(CP) similar to 3 degrees-5 degrees, depending on the value of delta(CP), the CP coverage at 5 sigma is 85% and the mass hierarchy would be determined with better than 5 sigma level for all values of delta(CP).  
  Address [Bayes, R.; Laing, A.; Soler, F. J. P.] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000310868700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1224  
Permanent link to this record
 

 
Author Bernabeu, J.; Espriu, D.; Puigdomenech, D. url  doi
openurl 
  Title (up) Gravitational waves in the presence of a cosmological constant Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 84 Issue 6 Pages 063523 - 13pp  
  Keywords  
  Abstract We derive the effects of a nonzero cosmological constant Lambda on gravitational wave propagation in the linearized approximation of general relativity. In this approximation, we consider the situation where the metric can be written as g(mu nu) = eta(mu nu) + h(mu nu)(Lambda) + h(mu nu)(W), h(mu nu)(Lambda,W) << 1, where h(mu nu)(Lambda) is the background perturbation and h(mu nu)(W) is a modification interpretable as a gravitational wave. For Lambda not equal 0, this linearization of Einstein equations is self-consistent only in certain coordinate systems. The cosmological Friedmann-Robertson-Walker coordinates do not belong to this class and the derived linearized solutions have to be reinterpreted in a coordinate system that is homogeneous and isotropic to make contact with observations. Plane waves in the linear theory acquire modifications of order root Lambda, both in the amplitude and the phase, when considered in Friedmann-Robertson-Walker coordinates. In the linearization process for h(mu nu), we have also included terms of order O(Lambda h(mu nu)). For the background perturbation h(mu nu)(Lambda), the difference is very small, but when the term h(mu nu)(W)Lambda is retained the equations of motion can be interpreted as describing massive spin-2 particles. However, the extra degrees of freedom can be approximately gauged away, coupling to matter sources with a strength proportional to the cosmological constant itself. Finally, we discuss the viability of detecting the modifications caused by the cosmological constant on the amplitude and phase of gravitational waves. In some cases, the distortion with respect to gravitational waves propagating in Minkowski space-time is considerable. The effect of Lambda could have a detectable impact on pulsar timing arrays.  
  Address [Bernabeu, J] Univ Valencia, Dept Fis Teor IFIC, CSIC, E-46100 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000295223100005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 766  
Permanent link to this record
 

 
Author Restrepo, D.; Taoso, M.; Valle, J.W.F.; Zapata, O. url  doi
openurl 
  Title (up) Gravitino dark matter and neutrino masses with bilinear R-parity violation Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 2 Pages 023523 - 7pp  
  Keywords  
  Abstract Bilinear R-parity violation provides an attractive origin for neutrino masses and mixings. In such schemes the gravitino is a viable decaying dark matter particle whose R-parity violating decays lead to monochromatic photons with rates accessible to astrophysical observations. We determine the parameter region allowed by gamma-ray line searches, dark matter relic abundance, and neutrino oscillation data, obtaining a limit on the gravitino mass m((G) over tilde) less than or similar to 1-10 GeV corresponding to a relatively low reheat temperature T-R less than or similar to few x 10(7)-10(8) GeV. Neutrino mass and mixing parameters may be reconstructed at accelerator experiments like the Large Hadron Collider.  
  Address [Restrepo, Diego] Univ Antioquia, Inst Fis, Medellin 1226, Colombia, Email: restrepo@udea.edu.co  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000299932700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 899  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva