|   | 
Details
   web
Records
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C.
Title (up) Dalitz plot analysis of the D+ -> K-K+K+ decay Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 063 - 36pp
Keywords Charm physics; Hadron-Hadron scattering (experiments); Particle and resonance production
Abstract The resonant structure of the doubly Cabibbo-suppressed decay D+-> K-K+K+ is studied for the first time. The measurement is based on a sample of pp-collision data, collected at a centre-of-mass energy of 8 TeV with the LHCb detector and corresponding to an integrated luminosity of 2 fb(-1). The amplitude analysis of this decay is performed with the isobar model and a phenomenological model based on an effective chiral Lagrangian. In both models the S-wave component in the K-K+ system is dominant, with a small contribution of the phi(1020) meson and a negligible contribution from tensor resonances. The K+K- scattering amplitudes for the considered combinations of spin (0,1) and isospin (0,1) of the two-body system are obtained from the Dalitz plot fit with the phenomenological decay amplitude.
Address [Bediaga, I.; Cruz Torres, M.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; dos Reis, A. C.; Soares Lavra, l.; Jadallah Aoude, R. Tourinho] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: alberto.correa.dos.reis@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000464731400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3989
Permanent link to this record
 

 
Author Martinelli, M.; Scarcella, F.; Hogg, N.B.; Kavanagh, B.J.; Gaggero, D.; Fleury, P.
Title (up) Dancing in the dark: detecting a population of distant primordial black holes Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 006 - 47pp
Keywords dark matter theory; gravitational waves / experiments; gravitational waves / sources; primordial black holes
Abstract Primordial black holes (PBHs) are compact objects proposed to have formed in the early Universe from the collapse of small-scale over-densities. Their existence may be detected from the observation of gravitational waves (GWs) emitted by PBH mergers, if the signals can be distinguished from those produced by the merging of astrophysical black holes. In this work, we forecast the capability of the Einstein Telescope, a proposed third-generation GW observatory, to identify and measure the abundance of a subdominant population of distant PBHs, using the difference in the redshift evolution of the merger rate of the two populations as our discriminant. We carefully model the merger rates and generate realistic mock catalogues of the luminosity distances and errors that would be obtained from GW signals observed by the Einstein Telescope. We use two independent statistical methods to analyse the mock data, finding that, with our more powerful, likelihood-based method, PBH abundances as small as fPBH approximate to 7 x 10(-6) ( fPBH approximate to 2 x 10(-6)) would be distinguishable from f(PBH) = 0 at the level of 3 sigma with a one year (ten year) observing run of the Einstein Telescope. Our mock data generation code, darksirens, is fast, easily extendable and publicly available on GitLab.
Address [Martinelli, Matteo] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Rome, Italy, Email: matteo.martinelli@inaf.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000911612900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5461
Permanent link to this record
 

 
Author Mandal, S.; Rojas, N.; Srivastava, R.; Valle, J.W.F.
Title (up) Dark matter as the origin of neutrino mass in the inverse seesaw mechanism Type Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 821 Issue Pages 136609 - 15pp
Keywords
Abstract We propose that neutrino masses are “seeded” by a dark sector within the inverse seesaw mechanism. This way we have a new, “hidden”, variant of the scotogenic scenario for radiative neutrino masses. We discuss both explicit and dynamical lepton number violation. In addition to invisible Higgs decays with majoron emission, we discuss in detail the pheneomenolgy of dark matter, as well as the novel features associated to charged lepton flavour violation, and neutrino physics.
Address [Mandal, Sanjoy; Valle, Jose W. F.] Univ Valencia, Inst Fis Corpuscular, AHEP Grp, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: smandal@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000734909800005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5065
Permanent link to this record
 

 
Author Lopez-Fogliani, D.E.; Perez, A.D.; Ruiz de Austri, R.
Title (up) Dark matter candidates in the NMSSM with RH neutrino superfields Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 067 - 35pp
Keywords dark matter theory; dark matter detectors
Abstract R-parity conserving supersymmetric models with right-handed (RH) neutrinos are very appealing since they could naturally explain neutrino physics and also provide a good dark matter (DM) candidate such as the lightest supersymmetric particle (LSP). In this work we consider the next-to-minimal supersymmetric standard model (NMSSM) plus RH neutrino superfields, with effective Majorana masses dynamically generated at the electroweak scale (EW). We perform a scan of the relevant parameter space and study both possible DM candidates: RH sneutrino and neutralino. Especially for the case of RH sneutrino DM we analyse the intimate relation between both candidates to obtain the correct amount of relic density. Besides the well-known resonances, annihilations through scalar quartic couplings and coannihilation mechanisms with all kind of neutralinos, are crucial. Finally, we present the impact of current and future direct and indirect detection experiments on both DM candidates.
Address [Lopez-Fogliani, Daniel E.] Univ Buenos Aires, Fac Ciencia Exactas & Nat, Inst Fis Buenos Aires UBA, RA-1428 Buenos Aires, DF, Argentina, Email: daniel.lopez@df.uba.ar;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000644501000049 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4824
Permanent link to this record
 

 
Author Coito, L.; Faubel, C.; Herrero-Garcia, J.; Santamaria, A.
Title (up) Dark matter from a complex scalar singlet: the role of dark CP and other discrete symmetries Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 202 - 34pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM
Abstract We study the case of a pseudo-scalar dark matter candidate which emerges from a complex scalar singlet, charged under a global U(1) symmetry, which is broken both explicitly and spontaneously. The pseudo-scalar is naturally stabilized by the presence of a remnant discrete symmetry: dark CP. We study and compare the phenomenology of several simplified models with only one explicit symmetry breaking term. We find that several regions of the parameter space are able to reproduce the observed dark matter abundance while respecting direct detection and invisible Higgs decay limits: in the resonances of the two scalars, featuring the known as forbidden or secluded dark matter, and through non-resonant Higgs-mediated annihilations. In some cases, combining different measurements would allow one to distinguish the breaking pattern of the symmetry. Moreover, this setup admits a light DM candidate at the sub-GeV scale. We also discuss the situation where more than one symmetry breaking term is present. In that case, the dark CP symmetry may be spontaneously broken, thus spoiling the stability of the dark matter candidate. Requiring that this does not happen imposes a constraint on the allowed parameter space. Finally, we consider an effective field theory approach valid in the pseudo-Nambu-Goldstone boson limit and when the U(1) breaking scale is much larger than the electroweak scale.
Address [Coito, Leonardo] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: leonardo.coito@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000723081600002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5031
Permanent link to this record
 

 
Author De Romeri, V.; Puerta, M.; Vicente, A.
Title (up) Dark matter in a charged variant of the Scotogenic model Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 7 Pages 623 - 16pp
Keywords
Abstract Scotogenic models are among the most popular possibilities to link dark matter and neutrino masses. In this work we discuss a variant of the Scotogenic model that includes charged fermions and a doublet with hypercharge 3/2. Neutrino masses are induced at the one-loop level thanks to the states belonging to the dark sector. However, in contrast to the standard Scotogenic model, only the scalar dark matter candidate is viable in this version. After presenting the model and explaining some particularities about neutrino mass generation, we concentrate on its dark matter phenomenology. We show that the observed dark matter relic density can be correctly reproduced in the usual parameter space regions found for the standard Scotogenic model or the Inert Doublet model. In addition, the presence of the charged fermions opens up new viable regions, not present in the original scenarios, provided some tuning of the parameters is allowed.
Address [De Romeri, Valentina; Puerta, Miguel; Vicente, Avelino] Univ Valencia, Inst Fis Corpuscular, CSIC, Paterna 46980, Spain, Email: deromeri@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000826946000002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5311
Permanent link to this record
 

 
Author De Romeri, V.; Nava, J.; Puerta, M.; Vicente, A.
Title (up) Dark matter in the scotogenic model with spontaneous lepton number violation Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 9 Pages 095019 - 11pp
Keywords
Abstract Scotogenic models constitute an appealing solution to the generation of neutrino masses and to the dark matter mystery. In this work we consider a version of the scotogenic model that breaks the lepton number spontaneously. At this scope, we extend the particle content of the scotogenic model with an additional singlet scalar which acquires a nonzero vacuum expectation value and breaks a global lepton number symmetry. As a consequence, a massless Goldstone boson, the majoron, appears in the particle spectrum. We discuss how the presence of the majoron modifies the phenomenology, both in flavor and dark matter observables. We focus on the fermionic dark matter candidate and analyze its relic abundance and prospects for both direct and indirect detection.
Address [De Romeri, Valentina; Nava, Jacopo; Puerta, Miguel; Vicente, Avelino] CSIC Univ Valencia, Inst Fis Corpuscular, Paterna 46980, Spain, Email: deromeri@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000995117000002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5536
Permanent link to this record
 

 
Author Bonilla, C.; Centelles Chulia, S.; Cepedello, R.; Peinado, E.; Srivastava, R.
Title (up) Dark matter stability and Dirac neutrinos using only standard model symmetries Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 3 Pages 033011 - 5pp
Keywords
Abstract We provide a generic framework to obtain stable dark matter along with naturally small Dirac neutrino masses generated at the loop level. This is achieved through the spontaneous breaking of the global U(1)(B-L) symmetry already present in the standard model. The U(1)(B-L) symmetry is broken down to a residual even Z(n) (n >= 4) subgroup. The residual Z(n) symmetry simultaneously guarantees dark matter stability and protects the Dirac nature of neutrinos. The U(1)(B-L) symmetry in our setup is anomaly free and can also be gauged in a straightforward way. Finally, we present an explicit example using our framework to show the idea in action.
Address [Bonilla, Cesar] Tech Univ Munich, Phys Dept T30d, James Franck Str, D-85748 Garching, Germany, Email: cesar.bonilla@tum.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000517243100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4308
Permanent link to this record
 

 
Author Leite, J.; Morales, A.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title (up) Dark matter stability from Dirac neutrinos in scotogenic 3-3-1-1 theory Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 1 Pages 015022 - 11pp
Keywords
Abstract We propose the simplest TeV-scale scotogenic extension of the original 3-3-1 theory, where dark matter stability is linked to the Dirac nature of neutrinos, which results from an unbroken B – L gauge symmetry. The new gauge bosons get masses through the interplay of spontaneous symmetry breaking a la Higgs and the Stueckelberg mechanism.
Address [Leite, Julio; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: julio.leite@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000551342000007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4470
Permanent link to this record
 

 
Author Caputo, A.; Esposito, A.; Geoffray, E.; Polosa, A.D.; Sun, S.C.
Title (up) Dark matter, dark photon and superfluid He-4 from effective field theory Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 802 Issue Pages 135258 - 6pp
Keywords Light dark matter; Effective theory; Helium; Phonon; Dark photon
Abstract We consider a model of sub-GeV dark matter whose interaction with the Standard Model is mediated by a new vector boson (the dark photon) which couples kinetically to the photon. We describe the possibility of constraining such a model using a superfluid He-4 detector, by means of an effective theory for the description of the superfluid phonon. We find that such a detector could provide bounds that are competitive with other direct detection experiments only for ultralight vector mediator, in agreement with previous studies. As a byproduct we also present, for the first time, the low-energy effective field theory for the interaction between photons and phonons.
Address [Caputo, Andrea] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedratico Jose Beltran 2, Paterna 46980, Spain, Email: angelo.esposito@epfl.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000515091400017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4349
Permanent link to this record