|   | 
Details
   web
Records
Author Orrigo, S.E.A. et al; Rubio, B.; Gelletly, W.; Agramunt, J.; Algora, A.; Molina, F.
Title (up) beta decay of the exotic T-z =-2 nuclei Fe-48, Ni-52, and Zn-56 Type Journal Article
Year 2016 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 93 Issue 4 Pages 044336 - 18pp
Keywords
Abstract The results of a study of the beta decays of three proton-rich nuclei with T-z = -2, namely Fe-48, Ni-52, and Zn-56, produced in an experiment carried out at GANIL, are reported. In all three cases we have extracted the half-lives and the total beta-delayed proton emission branching ratios. We have measured the individual beta-delayed protons and beta-delayed. rays and the branching ratios of the corresponding levels. Decay schemes have been determined for the three nuclei, and new energy levels are identified in the daughter nuclei. Competition between beta-delayed protons and. rays is observed in the de-excitation of the T = 2 isobaric analog states in all three cases. Absolute Fermi and Gamow-Teller transition strengths have been determined. The mass excesses of the nuclei under study have been deduced. In addition, we discuss in detail the data analysis taking as a test case Zn-56, where the exotic beta-delayed gamma-proton decay has been observed.
Address [Orrigo, S. E. A.; Rubio, B.; Gelletly, W.; Agramunt, J.; Algora, A.; Molina, F.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: sonja.orrigo@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000374955500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2645
Permanent link to this record
 

 
Author Domingo-Pardo, C.
Title (up) Beta-delayed neutron emission: first measurements in the heavy mass region and future prospects Type Journal Article
Year 2016 Publication Acta Physica Polonica B Abbreviated Journal Acta Phys. Pol. B
Volume 47 Issue 3 Pages 729-737
Keywords
Abstract Beta-delayed neutrons play a key role in the formation of heavy elements in explosive stellar environments. The final r-process abundance distribution, including the rare-earth peak, is tailored to a large extent by the neutrons released after the beta decay of very exotic neutron-rich nuclei encountered along the r-process path and during the freeze-out phase. Such scenarios involve a vast amount of – yet undiscovered – nuclei, and most of them are expected to be neutron emitters. In this respect, existing beta-delayed neutron emission data is rather scarce, spanning from the lightest isotopes up to the region of the fission-fragments with masses up to A similar to 150. This contribution gives an overview on the latest measurements of neutron branching ratios in the heavy mass region around N = 126, which was practically unexplored in the past. Present plans to access very exotic nuclei at the RIB-facility of RIKEN in the framework of the BRIKEN project, are presented, together with the expected impact in r-process nucleosynthesis studies.
Address [Domingo-Pardo, C.; S410 GSI Collaboration; BRIKEN Collaboration] Univ Valencia, CSIC, IFIC, Valencia, Spain
Corporate Author Thesis
Publisher Wydawnictwo Uniwersytetu Jagiellonskiego Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0587-4254 ISBN Medium
Area Expedition Conference
Notes WOS:000373495500015 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2623
Permanent link to this record
 

 
Author Baek, S.; Ko, P.; Park, M.; Park, W.I.; Yu, C.
Title (up) Beyond the dark matter effective field theory and a simplified model approach at colliders Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 756 Issue Pages 289-294
Keywords
Abstract Direct detection of and LHC search for the singlet fermion dark matter (SFDM) model with Higgs portal interaction are considered in a renormalizable model where the full Standard Model (SM) gauge symmetry is imposed by introducing a singlet scalar messenger. In this model, direct detection is described by an effective operator m(q)(q) over barq (chi) over bar chi as usual, but the full amplitude for monojet + is not an element of(T) involves two intermediate scalar propagators, which cannot be seen within the effective field theory (EFT) or in the simplified model without the full SM gauge symmetry. We derive the collider bounds from the ATLAS monojet + is not an element of(T) as well as the CMS t (t) over bar + is not an element of(T) data, finding out that the bounds and the interpretation of the results are completely different from those obtained within the EFT or simplified models. It is pointed out that it is important to respect unitarity, renormalizability and local gauge invariance of the SM.
Address [Baek, Seungwon; Ko, P.] KIAS, Sch Phys, Seoul 130722, South Korea, Email: swbaek@kias.re.kr;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000373569200044 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2635
Permanent link to this record
 

 
Author Pasquini, P.S.; Peres, O.L.G.
Title (up) Bounds on neutrino-scalar Yukawa coupling Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 93 Issue 5 Pages 053007 - 8pp
Keywords
Abstract General neutrino-scalar couplings appear in many extensions of the Standard Model. We can probe these neutrino-scalar couplings by a leptonic decay of mesons and from a heavy neutrino search. Our analysis improves the present limits to vertical bar g(e)vertical bar(2) < 1.9 x 10(-6) and vertical bar g(mu)vertical bar(2) < 1.9 x 10(-7) at 90% C.L. for massless scalars. For massive scalars, we found for the first time the constraints for g(alpha)(2) couplings to be 10(-6) – 10(-1), respectively, for scalar masses between up 100 MeV, and we have no limits for masses above 300 MeV.
Address [Pasquini, P. S.; Peres, O. L. G.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: pasquini@ifi.unicamp.br;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000371742000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2580
Permanent link to this record
 

 
Author Aguilar-Saavedra, J.A.; Bernabeu, J.
Title (up) Breaking down the entire W boson spin observables from its decay Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 93 Issue 1 Pages 011301 - 6pp
Keywords
Abstract We discuss the eight independent spin observables for the W boson in terms of its vector and tensor polarizations and identify the angular distributions and asymmetries able to separate them in collider experiments. The results are applied to the study of polarized top quark decays and diboson resonances. These novel observables are of great value for disentangling new physics mechanisms in W boson production.
Address [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000368324500001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2538
Permanent link to this record