toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F. url  doi
openurl 
  Title (up) Cosmic ray spectrum of protons plus helium nuclei between 6 and 158 TeV from HAWC data Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 6 Pages 063021 - 26pp  
  Keywords  
  Abstract A measurement with high statistics of the differential energy spectrum of light elements in cosmic rays, in particular, of primary H plus He nuclei, is reported. The spectrum is presented in the energy range from 6 to 158 TeV per nucleus. Data was collected with the High Altitude Water Cherenkov (HAWC) Observatory between June 2015 and June 2019. The analysis was based on a Bayesian unfolding procedure, which was applied on a subsample of vertical HAWC data that was enriched to 82% of events induced by light nuclei. To achieve the mass separation, a cut on the lateral age of air shower data was set guided by predictions of CORSIKA/QGSJET-I1-04 simulations. The measured spectrum is consistent with a broken power-law spectrum and shows a kneelike feature at around E = 24.0(-3.1)(+3.6) TeV, with a spectral index gamma = -2.51 +/- 0.02 before the break and with gamma = -2.83 +/- 0.02 above it. The feature has a statistical significance of 4.1 sigma. Within systematic uncertainties, the significance of the spectral break is 0.8 sigma.  
  Address [Albert, A.; Durocher, M.; Harding, J. P.; Kunde, G. J.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM 87545 USA, Email: juan.arteaga@umich.mx;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000789448800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5215  
Permanent link to this record
 

 
Author Arina, C.; Di Mauro, M.; Fornengo, N.; Heisig, J.; Jueid, A.; Ruiz de Austri, R. url  doi
openurl 
  Title (up) CosmiXs: cosmic messenger spectra for indirect dark matter searches Type Journal Article
  Year 2024 Publication Journal of Cosmology And Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 035 - 41pp  
  Keywords dark matter experiments; dark matter simulations; dark matter theory  
  Abstract The energy spectra of particles produced from dark matter (DM) annihilation or decay are one of the fundamental ingredients to calculate the predicted fluxes of cosmic rays and radiation searched for in indirect DM detection. We revisit the calculation of the source spectra for annihilating and decaying DM using the VINCIA shower algorithm in PYTHIA to include QED and QCD final state radiation and diagrams for the EW corrections with massive bosons, not present in the default PYTHIA shower model. We take into account the spin information of the particles during the entire EW shower and the off -shell contributions from massive gauge bosons. Furthermore, we perform a dedicated tuning of the VINCIA and PYTHIA parameters to LEP data on the production of pions, photons, and hyperons at the Z resonance and discuss the underlying uncertainties. To enable the use of our results in DM studies, we provide the tabulated source spectra for the most relevant cosmic messenger particles, namely antiprotons, positrons, gamma rays and the three neutrino flavors, for all the fermionic and bosonic channels and DM masses between 5 GeV and 100 TeV, on github.  
  Address [Arina, Chiara] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol CP3, Chemin Cyclotron 2, B-1348 Louvain La Neuve, Belgium, Email: chiara.arina@uclouvain.be;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001195757300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6041  
Permanent link to this record
 

 
Author Figueroa, D.G.; Florio, A.; Torrenti, F.; Valkenburg, W. url  doi
openurl 
  Title (up) CosmoLattice: A modern code for lattice simulations of scalar and gauge field dynamics in an expanding universe Type Journal Article
  Year 2023 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 283 Issue Pages 108586 - 13pp  
  Keywords Early universe; Real-time lattice simulations; Gauge -invariant lattice techniques  
  Abstract This paper describes CosmoGattice, a modern package for lattice simulations of the dynamics of interacting scalar and gauge fields in an expanding universe. CosmoGattice incorporates a series of features that makes it very versatile and powerful: i) it is written in C++ fully exploiting the object oriented programming paradigm, with a modular structure and a clear separation between the physics and the technical details, ii) it is MPI-based and uses a discrete Fourier transform parallelized in multiple spatial dimensions, which makes it specially appropriate for probing scenarios with well -separated scales, running very high resolution simulations, or simply very long ones, iii) it introduces its own symbolic language, defining field variables and operations over them, so that one can introduce differential equations and operators in a manner as close as possible to the continuum, iv) it includes a library of numerical algorithms, ranging from O(delta t(2)) to O(delta t(10)) methods, suitable for simulating global and gauge theories in an expanding grid, including the case of 'self-consistent' expansion sourced by the fields themselves. Relevant observables are provided for each algorithm (e.g. energy densities, field spectra, lattice snapshots) and we note that, remarkably, all our algorithms for gauge theories (Abelian or non-Abelian) always respect the Gauss constraint to machine precision. Program summary Program Title:: CosmoGattice CPC Library link to program files: https://doi .org /10 .17632 /44vr5xssc6 .1 Developer's repository link: http://github .com /cosmolattice /cosmolattice Licensing provisions: MIT Programming language: C++, MPI Nature of problem: The phenomenology of high energy physics in the early universe is typically characterized by non-linear dynamics, which cannot be captured accurately with analytical techniques. In order to fully understand the non-linearities developed in a given scenario, one needs to carry out lattice simulations. A number of public packages for lattice simulations have appeared over the years, but most of them are only capable of simulating scalar fields. However, realistic models of particle physics do contain other kind of field species, such as (Abelian or non-Abelian) gauge fields, whose non-linear dynamics can also play a relevant role in the early universe. Tensor modes representing gravitational waves are also naturally expected in many scenarios. Solution method: CosmoGattice represents a modern code for lattice simulations of scalar-gauge field theories in an expanding universe. It allows for the simulation of the evolution of interacting (singlet) scalar fields, charged scalar fields under U(1) and/or SU(2) gauge groups, and the corresponding associated Abelian and/or non-Abelian gauge fields. From version 1.1 onward, CosmoGattice also allows to simulate the production of gravitational waves. Simulations can be done either in a flat space-time background, or in a homogeneous and isotropic (spatially flat) expanding FLRW background. CosmoGattice provides symplectic integrators, with accuracy ranging from O (delta t(2)) up to O(delta t(10)), to simuate the non-linear dynamics of the appropriate fields in comoving three-dimensional lattices. The code is parallelized with MPI, and uses a discrete Fourier Transform parallelized in multiple spatial dimensions, which makes it a very powerful code for probing physical problems with well-separated scales. Moreover, the code has been designed as a `platform' to implement any system of dynamical equations suitable for discretization on a lattice.  
  Address [Figueroa, Daniel G.] CSIC, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: f.torrenti@unibas.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000899506700008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5451  
Permanent link to this record
 

 
Author Sanchis-Lozano, M.A.; Sarkisyan-Grinbaum, E.K.; Domenech-Garret, J.L.; Sanchis-Gual, N. url  doi
openurl 
  Title (up) Cosmological analogies in the search for new physics in high-energy collisions Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 3 Pages 035013 - 7pp  
  Keywords  
  Abstract In this paper, analogies between multiparticle production in high-energy collisions and the time evolution of the early Universe are discussed. A common explanation is put forward under the assumption of an unconventional early state: a rapidly expanding universe before recombination (last scattering surface), followed by the cosmic microwave background, later evolving up to present days, versus the formation of hidden/dark states in hadronic collisions followed by a conventional QCD parton shower yielding final-state particles. In particular, long-range angular correlations are considered pointing out deep connections between the two physical cases potentially useful for the discovery of new physics.  
  Address [Sanchis-Lozano, Miguel-Angel] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Dr Moliner 50, E-46100 Burjassot, Spain, Email: Miguel.Angel.Sanchis@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000558084500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4498  
Permanent link to this record
 

 
Author Figueroa, D.G.; Pieroni, M.; Ricciardone, A.; Simakachorn, P. url  doi
openurl 
  Title (up) Cosmological Background Interpretation of Pulsar Timing Array Data Type Journal Article
  Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 132 Issue 17 Pages 171002 - 9pp  
  Keywords  
  Abstract We discuss the interpretation of the detected signal by pulsar timing array (PTA) observations as a gravitational wave background of cosmological origin. We combine NANOGrav 15-years and EPTADR2new datasets and confront them against backgrounds from supermassive black hole binaries (SMBHBs), and cosmological signals from inflation, cosmic (super)strings, first-order phase transitions, Gaussian and non-Gaussian large scalar fluctuations, and audible axions. We find that scalar-induced, and to a lesser extent audible axion and cosmic superstring signals, provide a better fit than SMBHBs. These results depend, however, on modeling assumptions, so further data and analysis are needed to reach robust conclusions. Independently of the signal origin, the data strongly constrain the parameter space of cosmological signals, for example, setting an upper bound on primordial non-Gaussianity at PTA scales as jfraj less than or similar to 2.34 at 95% C.L.  
  Address [Figueroa, Daniel G.; Simakachorn, Peera] CSIC, Inst Fis Corpuscular, Valencia 46980, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001266039300006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6188  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva