|   | 
Details
   web
Records
Author CALICE Collaboration (Lai, S. et al); Irles, A.
Title (down) Software compensation for highly granular calorimeters using machine learning Type Journal Article
Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 4 Pages P04037 - 28pp
Keywords Large detector-systems performance; Pattern recognition; cluster finding; calibration and fitting methods; Performance of High Energy Physics Detectors
Abstract A neural network for software compensation was developed for the highly granular CALICE Analogue Hadronic Calorimeter (AHCAL). The neural network uses spatial and temporal event information from the AHCAL and energy information, which is expected to improve sensitivity to shower development and the neutron fraction of the hadron shower. The neural network method produced a depth-dependent energy weighting and a time-dependent threshold for enhancing energy deposits consistent with the timescale of evaporation neutrons. Additionally, it was observed to learn an energy-weighting indicative of longitudinal leakage correction. In addition, the method produced a linear detector response and outperformed a published control method regarding resolution for every particle energy studied.
Address [Lai, S.; Utehs, J.; Wilhahn, A.] Georg August Univ Gottingen, Phys Inst 2, Friedrich Hund Pl 1, D-37077 Gottingen, Germany, Email: jack.rolph@desy.de
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001230094600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6128
Permanent link to this record
 

 
Author Catani, S.; Cieri, L.; Colferai, D.; Coradeschi, F.
Title (down) Soft gluon-quark-antiquark emission in QCD hard scattering Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 1 Pages 38 - 18pp
Keywords
Abstract We consider the radiation of a soft gluon (g) and a soft quark-antiquark (qq & macr;) pair in QCD hard scattering. In the soft limit the scattering amplitude has a singular behaviour that is factorized and controlled by a soft current, which has a process-independent structure in colour space. We evaluate the soft gqq & macr; current at the tree level for an arbitrary multiparton scattering process. The irreducible correlation component of the current includes strictly nonabelian terms and also terms with an abelian character. Analogous abelian correlations appear for soft photon-lepton- antilepton emission in QED. The squared current for soft gqq & macr; emission produces colour dipole and colourtripole interactions between the hard-scattering partons. The colour tripole interactions are odd under charge conjugation and lead to charge asymmetry effects. We consider the specific applications to processes with two and three hard partons, and we discuss the structure of the corresponding charge asymmetry contributions. We also generalize our QCD results to the cases of QED and mixed QCD x QED radiative corrections.
Address [Catani, Stefano; Colferai, Dimitri] Univ Firenze, Sez Firenze, INFN, I-50019 Sesto Fiorentino, Italy, Email: colferai@fi.infn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000917520400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5460
Permanent link to this record
 

 
Author Di Valentino, E. et al; Mena, O.
Title (down) Snowmass2021-Letter of interest cosmology intertwined IV: The age of the universe and its curvature Type Journal Article
Year 2021 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 131 Issue Pages 102607 - 5pp
Keywords
Abstract A precise measurement of the curvature of the Universe is of prime importance for cosmology since it could not only confirm the paradigm of primordial inflation but also help in discriminating between different early-Universe scenarios. Recent observations, while broadly consistent with a spatially flat standard A Cold Dark Matter (ACDM) model, show tensions that still allow (and, in some cases, even suggest) a few percent deviations from a flat universe. In particular, the Planck Cosmic Microwave Background power spectra, assuming the nominal likelihood, prefer a closed universe at more than 99% confidence level. While new physics could be at play, this anomaly may be the result of an unresolved systematic error or just a statistical fluctuation. However, since positive curvature allows a larger age of the Universe, an accurate determination of the age of the oldest objects provides a smoking gun in confirming or falsifying the current flat ACDM model.
Address [Di Valentino, Eleonora; Chluba, Jens; Harrison, Ian; Hart, Luke; Pace, Francesco] Univ Manchester, JBCA, Manchester, Lancs, England, Email: eleonora.di-valentino@durham.ac.uk
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000657813100007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4855
Permanent link to this record
 

 
Author Di Valentino, E. et al; Mena, O.
Title (down) Snowmass2021-Letter of interest cosmology intertwined II: The hubble constant tension Type Journal Article
Year 2021 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 131 Issue Pages 102605 - 8pp
Keywords
Abstract The current cosmological probes have provided a fantastic confirmation of the standard A Cold Dark Matter cosmological model, which has been constrained with unprecedented accuracy. However, with the increase of the experimental sensitivity, a few statistically significant tensions between different independent cosmological datasets emerged. While these tensions can be in part the result of systematic errors, the persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the need for new physics. In this Letter of Interest we will focus on the 4.4 sigma – tension between the Planck estimate of the Hubble constant H-0 and the SH0ES collaboration measurements. After showing the H-0 evaluations made from different teams using different methods and geometric calibrations, we will list a few interesting models of new physics that could solve this tension and discuss how the next decade's experiments will be crucial.
Address [Di Valentino, Eleonora; Chluba, Jens; Harrison, Ian; Hart, Luke; Pace, Francesco] Univ Manchester, JBCA, Manchester, Lancs, England, Email: eleonora.di-valentino@durham.ac.uk
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000657813100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4853
Permanent link to this record
 

 
Author Di Valentino, E. et al; Mena, O.
Title (down) Snowmass2021-Letter of interest cosmology intertwined I: Perspectives for the next decade Type Journal Article
Year 2021 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 131 Issue Pages 102606 - 4pp
Keywords
Abstract The standard Lambda Cold Dark Matter cosmological model provides an amazing description of a wide range of astrophysical and astronomical data. However, there are a few big open questions, that make the standard model look like a first-order approximation to a more realistic scenario that still needs to be fully understood. In this Letter of Interest we will list a few important goals that need to be addressed in the next decade, also taking into account the current discordances present between the different cosmological probes, as the Hubble constant H-0 value, the sigma S-8(8) tension, and the anomalies present in the Planck results. Finally, we will give an overview of upgraded experiments and next-generation space-missions and facilities on Earth that will be of crucial importance to address all these questions.
Address [Di Valentino, Eleonora; Chluba, Jens; Harrison, Ian; Hart, Luke; Pace, Francesco] Univ Manchester, JBCA, Manchester, Lancs, England, Email: eleonora.di-valentino@durham.ac.uk
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000657813100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4856
Permanent link to this record