toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pino, F.; Roe, N.; Orero, A.; Falcon, C.; Rojas, S.; Benlloch, J.M.; Ros, D.; Pavia, J. doi  openurl
  Title (up) Development of a variable-radius pinhole SPECT system with a portable gamma camera Type Journal Article
  Year 2011 Publication Revista Española de Medicina Nuclear Abbreviated Journal Rev. Esp. Med. Nucl.  
  Volume 30 Issue 5 Pages 286-291  
  Keywords SPECT; Small animal; Pinhole; Portable gamma camera; Continuous scintillator  
  Abstract Objective: To develop a small-animal SPECT system using a low cost commercial portable gamma camera equipped with a pinhole collimator, a continuous scintillation crystal and a position-sensitive photomultiplier tube. Material and methods: The gamma camera was attached to a variable radius system, which enabled us to optimize sensitivity and resolution by adjusting the radius of rotation to the size of the object. To investigate the capability of the SPECT system for small animal imaging, the dependence of resolution and calibration parameters on radius was assessed and acquisitions of small phantoms and mice were carried out. Results: Resolution values, ranging from 1.0 mm for a radius of 21.4 mm and 1.4 mm for a radius of 37.2 mm were obtained, thereby justifying the interest of a variable radius SPECT system. Conclusions: The image quality of phantoms and animals were satisfactory, thus confirming the usefulness of the system for small animal SPECT imaging.  
  Address [Pino, F; Roe, N; Ros, D] Univ Barcelona, Fac Med, Unitat Biofis, Barcelona 7, Spain, Email: fpino@iconcologia.net  
  Corporate Author Thesis  
  Publisher Elsevier Science Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0212-6982 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294659400004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 753  
Permanent link to this record
 

 
Author Martinez-Reviriego, P.; Esperante, D.; Grudiev, A.; Gimeno, B.; Blanch, C.; Gonzalez-Iglesias, D.; Fuster-Martinez, N.; Martin-Luna, P.; Martinez, E.; Menendez, A.; Fuster, J. url  doi
openurl 
  Title (up) Dielectric assist accelerating structures for compact linear accelerators of low energy particles in hadrontherapy treatments Type Journal Article
  Year 2024 Publication Frontiers in Physics Abbreviated Journal Front. Physics  
  Volume 12 Issue Pages 1345237 - 12pp  
  Keywords dielectric assist accelerating (DAA) structures; radio frequency (RF); LINAC; hadrontherapy; standing wave  
  Abstract Dielectric Assist Accelerating (DAA) structures based on ultralow-loss ceramic are being studied as an alternative to conventional disk-loaded copper cavities. This accelerating structure consists of dielectric disks with irises arranged periodically in metallic structures working under the TM02-pi mode. In this paper, the numerical design of an S-band DAA structure for low beta particles, such as protons or carbon ions used for Hadrontherapy treatments, is shown. Four dielectric materials with different permittivity and loss tangent are studied as well as different particle velocities. Through optimization, a design that concentrates most of the RF power in the vacuum space near the beam axis is obtained, leading to a significant reduction of power loss on the metallic walls. This allows to fabricate cavities with an extremely high quality factor, over 100,000, and shunt impedance over 300 M omega/m at room temperature. During the numerical study, the design optimization has been improved by adjusting some of the cell parameters in order to both increase the shunt impedance and reduce the peak electric field in certain locations of the cavity, which can lead to instabilities in its normal functioning.  
  Address [Martinez-Reviriego, Pablo; Esperante, Daniel; Gimeno, Benito; Blanch, Cesar; Gonzalez-Iglesias, Daniel; Fuster-Martinez, Nuria; Martin-Luna, Pablo; Martinez, Eduardo; Menendez, Abraham; Fuster, Juan] CSIC Univ Valencia, Inst Fis Corpuscular IFIC, Paterna, Spain, Email: pablo.martinez.reviriego@ific.uv.es  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001162373700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5953  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C. url  doi
openurl 
  Title (up) Differential branching fraction and angular analysis of Lambda(0)(b) -> Lambda mu(+)mu(-) decays Type Journal Article
  Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 115 - 29pp  
  Keywords Rare decay; Hadron-Hadron Scattering; Branching fraction; B physics; Flavour Changing Neutral Currents  
  Abstract The differential branching fraction of the rare decay Lambda(0)(b) -> Lambda mu(+)mu(-) is measured as a function of q(2), the square of the dimuon invariant mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb(-1), collected by the LHCb experiment. Evidence of signal is observed in the q(2) region below the square of the J/psi mass. Integrating over 15 < q(2) < 20 GeV2/c(4) the differential branching fraction is measured as dB(Lambda(0)(b) -> Lambda mu(+)mu(-))/dq(2) = (1.18(-0.08)(+0.09) +/- 0.03 +/- 0.27) x 10(-7) (GeV2/c(4))(-1) where the uncertainties are statistical, systematic and due to the normalisation mode Lambda(0)(b) -> J/psi Lambda , respectively. In the q(2) intervals where the signal is observed, angular distributions are studied and the forward-backward asymmetries in the dimuon (A(FB)(l)) and hadron (A(FB)(h)) systems are measured for the first time. In the range 15 < q(2) < 20GeV(2)/c(4) they are found to be A(FB)(l) = -0.05 +/- 0.09 (stat) +/- 0.03 (syst) and A(FB)(h) = -0.29 +/- 0.07 (stat) +/- 0.03 (syst).  
  Address [Bediaga, I.; De Miranda, J. M.; Ferreira Rodrigues, F.; Gomes, A.; Massafferri, A.; Osorio Rodrigues, B.; dos Reis, A. C.; Rodrigues, A. B.] Ctr Brasileiro Pesquisas Fisicas CBPF, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000356955000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2288  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Oyanguren, A.; Ruiz Valls, P. url  doi
openurl 
  Title (up) Differential branching fraction and angular analysis of the decay B-0 -> K*(0)mu(+)mu(-) Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 131 - 31pp  
  Keywords Rare decay; Hadron-Hadron Scattering; B physics; Flavour Changing Neutral Currents; Flavor physics  
  Abstract The angular distribution and differential branching fraction of the decay B-0 -> K*(0)mu(+)mu(-) are studied using a data sample, collected by the LHCb experiment in pp collisions at root s = 7 TeV, corresponding to an integrated luminosity of 1.0 fb(-1). Several angular observables are measured in bins of the dimuon invariant mass squared, q(2). A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q(0)(2) = 4.9 +/- 0.9 GeV2/c(4), where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions.  
  Address [Bediaga, I.; De Miranda, J. M.; Ferreira Rodrigues, F.; Massafferri, A.; Nasteva, I.; dos Reis, A. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil, Email: thomas.blake@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000324114000032 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1683  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C. url  doi
openurl 
  Title (up) Differential branching fractions and isospin asymmetries of B -> K ((*)) μ(+) μ(-) decays Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 133 - 22pp  
  Keywords Rare decay; Branching fraction; B physics; Flavour Changing Neutral Currents; Hadron-Hadron Scattering  
  Abstract The isospin asymmetries of B -> K μ(+) μ(-) and B -> K (*) μ(+) μ(-) decays and the partial branching fractions of the B (0) -> K (0) μ(+) μ(-), B (+) -> K (+) μ(+) μ(-) and B (+) -> K (*+) μ(+) μ(-) decays are measured as functions of the dimuon mass squared, q (2). The data used correspond to an integrated luminosity of 3 fb(-1) from proton-proton collisions collected with the LHCb detector at centre-of-mass energies of 7 TeV and 8 TeV in 2011 and 2012, respectively. The isospin asymmetries are both consistent with the Standard Model expectations. The three measured branching fractions favour lower values than their respective theoretical predictions, however they are all individually consistent with the Standard Model.  
  Address [Bediaga, I.; De Miranda, J. M.; Ferreira Rodrigues, F.; Gomes, A.; Hicheur, A.; Massafferri, A.; dos Reis, A. C.; Rodrigues, A. B.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000338448800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1833  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Costa, M.J.; Didenko,, M.; Escobar, C.; Estrada Pastor, O.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title (up) Differential t(t)over-tilde cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb(-1) of ATLAS data Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 080 - 108pp  
  Keywords Hadron-Hadron Scattering; Jet Substructure and Boosted Jets; Top Physics  
  Abstract Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 TeV proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum (p(T)) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the t (t) over bar branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have p(T)> 500 GeV and p(T)> 350 GeV, respectively, is 331 +/- 3(stat.) +/- 39(syst.) fb. This is approximately 20% lower than the prediction of 398(-49)(+48) fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is 1.94 +/- 0.02(stat.) +/- 0.25(syst.) pb. This agrees with the NNLO prediction of 1.96(-0.17)(+0.02) pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.  
  Address [Filmer, E. K.; Jackson, P.; Kong, A. X. Y.; Potti, H.; Ruggeri, T. A.; Sharma, A. S.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001022682600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5650  
Permanent link to this record
 

 
Author Egea Canet, F.J. et al; Gadea, A.; Huyuk, T. doi  openurl
  Title (up) Digital Front-End Electronics for the Neutron Detector NEDA Type Journal Article
  Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 62 Issue 3 Pages 1063-1069  
  Keywords Digital systems; front-end electronics; neutron detectors; neutron-gamma discrimination  
  Abstract This paper presents the design of the NEDA (Neutron Detector Array) electronics, a first attempt to involve the use of digital electronics in large neutron detector arrays. Starting from the front-end modules attached to the PMTs (PhotoMultiplier Tubes) and ending up with the data processing workstations, a comprehensive electronic system capable of dealing with the acquisition and pre-processing of the neutron array is detailed. Among the electronic modules required, we emphasize the front-end analog processing, the digitalization, digital pre-processing and communications firmware, as well as the integration of the GTS (Global Trigger and Synchronization) system, already used successfully in AGATA (Advanced Gamma Tracking Array). The NEDA array will be available for measurements in 2016.  
  Address [Egea Canet, F. J.; Gonzalez, V.; Sanchis, E.] Univ Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, Spain, Email: jaegea@ific.uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000356458000029 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2279  
Permanent link to this record
 

 
Author Mengoni, D.; Duenas, J.A.; Assie, M.; Boiano, C.; John, P.R.; Aliaga, R.J.; Beaumel, D.; Capra, S.; Gadea, A.; Gonzales, V.; Gottardo, A.; Grassi, L.; Herrero-Bosch, V.; Houdy, T.; Martel, I.; Parkar, V.V.; Perez-Vidal, R.M.; Pullia, A.; Sanchis, E.; Triossi, A.; Valiente-Dobon, J.J. doi  openurl
  Title (up) Digital pulse-shape analysis with a TRACE early silicon prototype Type Journal Article
  Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 764 Issue Pages 241-246  
  Keywords Silicon detector; Light-charged particles; Digital pulse shape analysis; Particle identification; Gamma-ray spectroscopy  
  Abstract A highly segmented silicon-pad detector prototype has been tested to explore the performance of the digital pulse shape analysis in the discrimination of the particles reaching the silicon detector. For the first time a 200 tun thin silicon detector, grown using an ordinary floating zone technique, has been shown to exhibit a level discrimination thanks to the fine segmentation. Light-charged particles down to few MeV have been separated, including their punch-through. A coaxial HPGe detector in time coincidence has further confirmed the quality of the particle discrimination.  
  Address [Mengoni, D.; John, P. R.; Grassi, L.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341987000030 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1929  
Permanent link to this record
 

 
Author Modamio, V.; Valiente-Dobon, J.J.; Jaworski, G.; Huyuk, T.; Triossi, A.; Egea, J.; Di Nitto, A.; Soderstrom, P.A.; Ros, J.A.; de Angelis, G.; de France, G.; Erduran, M.N.; Erturk, S.; Gadea, A.; Gonzalez, V.; Kownacki, J.; Moszynski, M.; Nyberg, J.; Palacz, M.; Sanchis, E.; Wadsworthm, R. doi  openurl
  Title (up) Digital pulse-timing technique for the neutron detector array NEDA Type Journal Article
  Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 775 Issue Pages 71-76  
  Keywords Digital timing; Constant fraction discriminator; Liquid scintillator; BC501A; Neutron detector; NEDA  
  Abstract A new digital pulse-timing algorithm, to be used with the future neutron detector array NEDA, has been developed and tested. The time resolution of four 5 in diameter photomultiplier tubes (XP4512, R4144, R11833-100, and ET9390-kb), coupled to a cylindrical 5 in by 5 in BC501A liquict scintillator detector was measured by employing digital sampling electronics and a constant fraction discriminator (CFD) algorithm. The zero crossing of the CM algorithm was obtained with a cubic spline interpolation, which was continuous up to the second derivative. The performance of the algorithm was studied at sampling rates of 500 MS/s and 200 MS/s. The time resolution obtained with the digital electronics was compared to the values acquired with a standard analog CFD. The result of this comparison shows that the time resolution from the analog and the digital measurements at 500 MS/s and at 200 MS/s are within 15% for all the tested photomultiplier tubes.  
  Address [Modamio, V.; Valiente-Dobon, J. J.; Triossi, A.; de Angelis, G.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy, Email: victor.modamio@lnl.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000348040900011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2093  
Permanent link to this record
 

 
Author Campanario, F.; Kerner, M.; Ninh, L.D.; Rosario, I. url  doi
openurl 
  Title (up) Diphoton production in vector-boson scattering at the LHC at next-to-leading order QCD Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 072 - 25pp  
  Keywords NLO Computations  
  Abstract In this paper, we present results at next-to-leading order (NLO) QCD for photon pair production in association with two jets via vector boson scattering within the Standard Model (SM), and also in an effective field theory framework with anomalous gauge coupling effects via bosonic dimension-6 and 8 operators. We observe that, com- pared to other processes in the class of two electroweak (EW) vector boson production in association with two jets, more exclusive cuts are needed in order to suppress the SM QCD-induced background channel. As expected, the NLO QCD corrections reduce the scale uncertainties considerably. Using a well-motivated dynamical scale choice, we find moderate K -factors for the EW-induced process while the QCD-induced channel receives much larger corrections. Furthermore, we observe that applying a cut of Delta phi(cut)(j2 gamma 1) <2.5 for the second hardest jet and the hardest photon helps to increase the signal significance and reduces the impact of higher-order QCD corrections.  
  Address [Campanario, Francisco; Rosario, Ivan] Univ Valencia, CSIC, IFIC, Div Theory, E-46980 Valencia, Spain, Email: francisco.campanario@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000541147600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4433  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva