|   | 
Details
   web
Records
Author Coppola, M.; Gomez Dumm, D.; Noguera, S.; Scoccola, N.N.
Title (up) Magnetic field driven enhancement of the weak decay width of charged pions Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 058 - 19pp
Keywords QCD Phenomenology
Abstract We study the effect of a uniform magnetic field B on the decays pi- > l- nu_l bar, where l(-)=e(-), μ(-), carrying out a general analysis that includes four pi (-) decay constants. Taking the values of these constants from a chiral effective Nambu-Jona-Lasinio (NJL) model, it is seen that the total decay rate gets strongly increased with respect to the B = 0 case, with an enhancement factor ranging from similar to 10 for eB = 0.1 GeV2 up to similar to 10(3) for eB = 1 GeV2. The ratio between electronic and muonic decays gets also enhanced, reaching a value of about 1 : 2 for eB = 1 GeV2. In addition, we find that for large B the angular distribution of outgoing antineutrinos shows a significant suppression in the direction of the magnetic field.
Address [Coppola, Maximo; Scoccola, Norberto N.] Consejo Nacl Invest Cient & Tecn, Rivadavia 1917, RA-1033 Buenos Aires, DF, Argentina, Email: coppola@tandar.cnea.gov.ar;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000570908100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4534
Permanent link to this record
 

 
Author Cepedello, R.; Esser, F.; Hirsch, M.; Sanz, V.
Title (up) Mapping the SMEFT to discoverable models Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 229 - 34pp
Keywords SMEFT; Other Weak Scale BSM Models
Abstract The matching of specific new physics scenarios onto the SMEFT framework is a well-understood procedure. The inverse problem, the matching of the SMEFT to UV scenarios, is more difficult and requires the development of new methods to perform a systematic exploration of models. In this paper we use a diagrammatic technique to construct in an automated way a complete set of possible UV models (given certain, well specified assumptions) that can produce specific groups of SMEFT operators, and illustrate its use by generating models with no tree-level contributions to four-fermion (4F) operators. Those scenarios, which only contribute to 4F at one-loop order, can contain relatively light particles that could be discovered at the LHC in direct searches. For this class of models, we find an interesting interplay between indirect SMEFT and direct searches. We discuss some examples on how this interplay would look like when combining low-energy observables with the SMEFT Higgs-fermion analyses and searches for resonance at the LHC.
Address [Cepedello, Ricardo] Univ Wurzburg, Inst Theoret Phys & Astrophys, Emil Hilb Weg 22, D-97074 Wurzburg, Germany, Email: ricardo.cepedello@physik.uni-wuerzburg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000861474500009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5361
Permanent link to this record
 

 
Author Della Morte, M.; Dooling, S.; Heitger, J.; Hesse, D.; Simma, H.
Title (up) Matching of heavy-light flavour currents between HQET at order 1/m and QCD: I. Strategy and tree-level study Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 060 - 31pp
Keywords Lattice Gauge Field Theories; B-Physics; Heavy Quark Physics
Abstract We present a strategy how to match the full set of components of the heavy-light axial and vector currents in Heavy Quark Effective Theory (HQET), up to and including 1/m (h) -corrections, to QCD. While the ultimate goal is to apply these matching conditions non-perturbatively, in this study we first have implemented them at tree-level, in order to find good choices of the matching observables with small contributions. They can later be employed in the non-perturbative matching procedure which is a crucial part of precision HQET computations of semileptonic decay form factors in lattice QCD.
Address [Della Morte, Michele] Inst Fis Corpuscular IFIC CSIC, E-46980 Paterna, Spain, Email: dellamor@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000336406000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1795
Permanent link to this record
 

 
Author Aguilera-Verdugo, J.J.; Hernandez-Pinto, R.J.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.
Title (up) Mathematical properties of nested residues and their application to multi-loop scattering amplitudes Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 112 - 42pp
Keywords NLO Computations; QCD Phenomenology
Abstract The computation of multi-loop multi-leg scattering amplitudes plays a key role to improve the precision of theoretical predictions for particle physics at high-energy colliders. In this work, we focus on the mathematical properties of the novel integrand-level representation of Feynman integrals, which is based on the Loop-Tree Duality (LTD). We explore the behaviour of the multi-loop iterated residues and explicitly show, by developing a general compact and elegant proof, that contributions associated to displaced poles are cancelled out. The remaining residues, called nested residues as originally introduced in ref. [1], encode the relevant physical information and are naturally mapped onto physical configurations associated to nondisjoint on-shell states. By going further on the mathematical structure of the nested residues, we prove that unphysical singularities vanish, and show how the final expressions can be written by using only causal denominators. In this way, we provide a mathematical proof for the all-loop formulae presented in ref. [2].
Address [Jesus Aguilera-Verdugo, J.; Rodrigo, German; Sborlini, German F. R.; Torres Bobadilla, William J.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient, E-46980 Valencia, Spain, Email: jesus.aguilera@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000620526300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4726
Permanent link to this record
 

 
Author Huang, J.W.; Madden, A.; Racco, D.; Reig, M.
Title (up) Maximal axion misalignment from a minimal model Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 143 - 39pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM
Abstract The QCD axion is one of the best motivated dark matter candidates. The misalignment mechanism is well known to produce an abundance of the QCD axion consistent with dark matter for an axion decay constant of order 10(12) GeV. For a smaller decay constant, the QCD axion, with Peccei-Quinn symmetry broken during inflation, makes up only a fraction of dark matter unless the axion field starts oscillating very close to the top of its potential, in a scenario called “large-misalignment”. In this scenario, QCD axion dark matter with a small axion decay constant is partially comprised of very dense structures. We present a simple dynamical model realising the large-misalignment mechanism. During inflation, the axion classically rolls down its potential approaching its minimum. After inflation, the Universe reheats to a high temperature and a modulus (real scalar field) changes the sign of its minimum dynamically, which changes the sign of the mass of a vector-like fermion charged under QCD. As a result, the minimum of the axion potential during inflation becomes the maximum of the potential after the Universe has cooled through the QCD phase transition and the axion starts oscillating. In this model, we can produce QCD axion dark matter with a decay constant as low as 6 x 10(9) GeV and an axion mass up to 1 meV. We also summarise the phenomenological implications of this mechanism for dark matter experiments and colliders.
Address [Huang, Junwu; Madden, Amalia; Racco, Davide] Perimeter Inst Theoret Phys, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada, Email: jhuang@perimeterinstitute.ca;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000586368800006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4592
Permanent link to this record