toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author n_TOF Collaboration (Zugec, P. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. url  doi
openurl 
  Title (down) Integral measurement of the C-12(n, p)B-12 reaction up to 10 GeV Type Journal Article
  Year 2016 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 52 Issue 4 Pages 101 - 13pp  
  Keywords  
  Abstract The integral measurement of the C-12(n, p)B-12 reaction was performed at the neutron time-of-flight facility nTOF at CERN. The total number of B-12 nuclei produced per neutron pulse of the nTOF beam was determined using the activation technique in combination with a time-of-flight technique. The cross section is integrated over the n_TOF neutron energy spectrum from reaction threshold at 13.6 MeV to 10 GeV. Having been measured up to 1 GeV on basis of the U-235(n, f) reaction, the neutron energy spectrum above 200 MeV has been re-evaluated due to the recent extension of the cross section reference for this particular reaction, which is otherwise considered a standard up to 200 MeV. The results from the dedicated GEANT4 simulations have been used to evaluate the neutron flux from 1 GeV up to 10 GeV. The experimental results related to the C-12(n, p)B-12 reaction are compared with the evaluated cross sections from major libraries and with the predictions of different GEANT4 models, which mostly underestimate the B-12 production. On the contrary, a good reproduction of the integral cross section derived from measurements is obtained with TALYS-1.6 calculations, with optimized parameters.  
  Address [Zugec, P.; Bosnar, D.] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 41000, Croatia, Email: pzugec@phy.hr  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000376181400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2683  
Permanent link to this record
 

 
Author Davesne, D.; Becker, P.; Pastore, A.; Navarro, J. url  doi
openurl 
  Title (down) Infinite matter properties and zero-range limit of non-relativistic finite-range interactions Type Journal Article
  Year 2016 Publication Annals of Physics Abbreviated Journal Ann. Phys.  
  Volume 375 Issue Pages 288-312  
  Keywords Equation of state; Effective interaction; Infinite matter  
  Abstract We discuss some infinite matter properties of two finite-range interactions widely used for nuclear structure calculations, namely Gogny and M3Y interactions. We show that some useful informations can be deduced for the central, tensor and spin orbit terms from the spin-isospin channels and the partial wave decomposition of the symmetric nuclear matter equation of state. We show in particular that the central part of the Gogny interaction should benefit from the introduction of a third Gaussian and the tensor parameters of both interactions can be deduced from special combinations of partial waves. We also discuss the fact that the spin orbit of the M3Y interaction is not compatible with local gauge invariance. Finally, we show that the zero-range limit of both families of interactions coincides with the specific form of the zero-range Skyrme interaction extended to higher momentum orders and we emphasize from this analogy its benefits.  
  Address [Davesne, D.; Becker, P.] Univ Lyon 1, Univ Lyon, CNRS IN2P3, Nucl Phys Inst Lyon,UMR 5822, F-69622 Villeurbanne, France, Email: pbecker@ipnl.in2p3.fr  
  Corporate Author Thesis  
  Publisher Academic Press Inc Elsevier Science Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-4916 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000389788100017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2887  
Permanent link to this record
 

 
Author Liu, S.; Bogard, F.; Cornebise, P.; Faus-Golfe, A.; Fuster-Martinez, N.; Griesmayer, E.; Guler, H.; Kubytskyi, V.; Sylvia, C.; Tauchi, T.; Terunuma, N.; Bambade, P. url  doi
openurl 
  Title (down) In vacuum diamond sensor scanner for beam halo measurements in the beam line at the KEK Accelerator Test Facility Type Journal Article
  Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 832 Issue Pages 231-242  
  Keywords Diamond sensor; Beam halo; ATF2  
  Abstract The investigation of beam halo transverse distributions is important for the understanding of beam losses and the control of backgrounds in Future Linear Colliders (FLC). A novel in vacuum diamond sensor (DSv) scanner with four strips has been designed and developed for the investigation of the beam halo transverse distributions and also for the diagnostics of Compton recoil electrons after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for the ILC and CLIC linear collider projects. Using the DSv, a dynamic range of similar to 10(6) has been successfully demonstrated and confirmed for the first time in simultaneous beam core (similar to 10(6) electrons) and beam halo (similar to 10(3) electrons) measurements at ATF2. This report presents the characterization, performance studies and tests of diamond sensors using an a source, as well as using the electron beams at PHIL, a low energy (<5 MeV) photo-injector at LAL, and at ATF2. First beam halo measurement results using the DSv at ATF2 with different beam intensities and vacuum levels are also presented. Such measurements not only allow one to evaluate the different sources of beam halo generation but also to define the requirements for a suitable collimation system to be installed at ATF2, as well as to optimize its performance during future operation.  
  Address [Liu, S.; Bogard, F.; Cornebise, P.; Faus-Golfe, A.; Guler, H.; Kubytskyi, V.; Sylvia, C.; Bambade, P.] Univ Paris Saclay, Univ Paris 11, CNRS, LAL,IN2P3, Orsay, France, Email: sliu@lal.in2p3.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000382256400026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2786  
Permanent link to this record
 

 
Author Giusarma, E.; Gerbino, M.; Mena, O.; Vagnozzi, S.; Ho, S.; Freese, K. url  doi
openurl 
  Title (down) Improvement of cosmological neutrino mass bounds Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 94 Issue 8 Pages 083522 - 8pp  
  Keywords  
  Abstract The most recent measurements of the temperature and low-multipole polarization anisotropies of the cosmic microwave background from the Planck satellite, when combined with galaxy clustering data from the Baryon Oscillation Spectroscopic Survey in the form of the full shape of the power spectrum, and with baryon acoustic oscillation measurements, provide a 95% confidence level (C.L.) upper bound on the sum of the three active neutrinos Sigma m(nu) < 0.183 eV, among the tightest neutrino mass bounds in the literature, to date, when the same data sets are taken into account. This very same data combination is able to set, at similar to 70% C.L., an upper limit on Sigma m(nu) of 0.0968 eV, a value that approximately corresponds to the minimal mass expected in the inverted neutrino mass hierarchy scenario. If high-multipole polarization data from Planck is also considered, the 95% C.L. upper bound is tightened to Sigma m(nu) < 0.176 eV. Further improvements are obtained by considering recent measurements of the Hubble parameter. These limits are obtained assuming a specific nondegenerate neutrino mass spectrum; they slightly worsen when considering other degenerate neutrino mass schemes. Low-redshift quantities, such as the Hubble constant or the reionization optical depth, play a very important role when setting the neutrino mass constraints. We also comment on the eventual shifts in the cosmological bounds on Sigma m(nu) when possible variations in the former two quantities are addressed.  
  Address [Giusarma, Elena; Ho, Shirley] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA, Email: egiusarm@andrew.cmu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387120400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2855  
Permanent link to this record
 

 
Author Serenelli, A.; Scott, P.; Villante, F.L.; Vincent, A.C.; Asplund, M.; Basu, S.; Grevesse, N.; Pena-Garay, C. url  doi
openurl 
  Title (down) Implications of solar wind measurements for solar models and composition Type Journal Article
  Year 2016 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 463 Issue 1 Pages 2-9  
  Keywords neutrinos; Sun: abundances; Sun: helioseismology; Sun: interior  
  Abstract We critically examine recent claims of a high solar metallicity by von Steiger & Zurbuchen (2016, vSZ16) based onin situ measurements of the solar wind, rather than the standard spectroscopically inferred abundances (Asplund et al. 2009, hereafter AGSS09). We test the claim by Vagnozzi et al. (2016) that a composition based on the solar wind enables one to construct a standard solar model in agreement with helioseismological observations and thus solve the decades-old solar modelling problem. We show that, although some helioseismological observables are improved compared to models computed with spectroscopic abundances, most are in fact worse. The high abundance of refractory elements leads to an overproduction of neutrinos, with a predicted B-8 flux that is nearly twice its observed value, and Be-7 and CNO fluxes that are experimentally ruled out at high confidence. A combined likelihood analysis shows that models using the vSZ16 abundances are worse than AGSS09 despite a higher metallicity. We also present astrophysical and spectroscopic arguments showing the vSZ16 composition to be an implausible representation of the solar interior, identifying the first ionization potential effect in the outer solar atmosphere and wind as the likely culprit.  
  Address [Serenelli, Aldo] Inst Space Sci IEEC CSIC, E-08193 Barcelona, Spain, Email: aldos@ice.csic.es  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000386464900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2842  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva