toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Borys, D. et al; Brzezinski, K. doi  openurl
  Title (up) ProTheRaMon-a GATE simulation framework for proton therapy range monitoring using PET imaging Type Journal Article
  Year 2022 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 67 Issue 22 Pages 224002 - 15pp  
  Keywords proton therapy; GATE; Monte Carlo simulations; J-PET; medical imaging  
  Abstract Objective. This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland. Approach. The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design. Main results. ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized. Significance. We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github (Borys et al 2022).  
  Address [Borys, Damian] Silesian Tech Univ, Dept Syst Biol & Engn, Gliwice, Poland, Email: damin.borys@polsl.pl  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000885248200001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5416  
Permanent link to this record
 

 
Author NEXT Collaboration (Woodruff, K. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Herrero, P.; Kekic, M.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N. url  doi
openurl 
  Title (up) Radio frequency and DC high voltage breakdown of high pressure helium, argon, and xenon Type Journal Article
  Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 15 Issue 4 Pages P04022 - 15pp  
  Keywords Gaseous detectors; Gaseous imaging and tracking detectors  
  Abstract Motivated by the possibility of guiding daughter ions from double beta decay events to single-ion sensors for barium tagging, the NEXT collaboration is developing a program of R&D to test radio frequency (RF) carpets for ion transport in high pressure xenon gas. This would require carpet functionality in regimes at higher pressures than have been previously reported, implying correspondingly larger electrode voltages than in existing systems. This mode of operation appears plausible for contemporary RF-carpet geometries due to the higher predicted breakdown strength of high pressure xenon relative to low pressure helium, the working medium in most existing RF carpet devices. In this paper we present the first measurements of the high voltage dielectric strength of xenon gas at high pressure and at the relevant RF frequencies for ion transport (in the 10MHz range), as well as new DC and RF measurements of the dielectric strengths of high pressure argon and helium gases at small gap sizes. We find breakdown voltages that are compatible with stable RF carpet operation given the gas, pressure, voltage, materials and geometry of interest.  
  Address [Woodruff, K.; Baeza-Rubio, J.; Huerta, D.; Jones, B. J. P.; McDonald, A. D.; Norman, L.; Nygren, D. R.; Byrnes, N. K.; Denisenko, A. A.; Foss, F. W., Jr.; Laing, A.; Martinez, A.; Rogers, L.; Thapa, P.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA, Email: katherine.woodruff@uta.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000534740000022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4401  
Permanent link to this record
 

 
Author Clinthorne, N.; Brzezinski, K.; Chesi, E.; Cochran, E.; Grkovski, M.; Grosicar, B.; Honscheid, K.; Huh, S.; Kagan, H.; Lacasta, C.; Linhart, V.; Mikuz, M.; Smith, D.S.; Stankova, V.; Studen, A.; Weilhammer, P.; Zontar, D. doi  openurl
  Title (up) Silicon as an unconventional detector in positron emission tomography Type Journal Article
  Year 2013 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 699 Issue Pages 216-220  
  Keywords PET; Silicon detectors; Multiresolution imaging; Magnifying PET  
  Abstract Positron emission tomography (PET) is a widely used technique in medical imaging and in studying small animal models of human disease. In the conventional approach, the 511 keV annihilation photons emitted from a patient or small animal are detected by a ring of scintillators such as LYSO read out by arrays of photodetectors. Although this has been successful in achieving similar to 5 mm FWHM spatial resolution in human studies and similar to 1 mm resolution in dedicated small animal instruments, there is interest in significantly improving these figures. Silicon, although its stopping power is modest for 511 keV photons, offers a number of potential advantages over more conventional approaches including the potential for high intrinsic spatial resolution in 3D. To evaluate silicon in a variety of PET “magnifying glass” configurations, an instrument was constructed that consists of an outer partial-ring of PET scintillation detectors into which various arrangements of silicon detectors are inserted to emulate dual-ring or imaging probe geometries. Measurements using the test instrument demonstrated the capability of clearly resolving point sources of Na-22 having a 1.5 mm center-to-center spacing as well as the 1.2 mm rods of a F-18-filled resolution phantom. Although many challenges remain, silicon has potential to become the PET detector of choice when spatial resolution is the primary consideration. (C) 2012 Elsevier B.V. All rights reserved.  
  Address [Clinthorne, Neal; Huh, Sam] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA, Email: nclintho@umich.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000312809200045 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1290  
Permanent link to this record
 

 
Author Lerendegui-Marco, J.; Babiano-Suarez, V.; Balibrea-Correa, J.; Caballero, L.; Calvo, D.; Ladarescu, I.; Domingo-Pardo, C. url  doi
openurl 
  Title (up) Simultaneous Gamma-Neutron Vision device: a portable and versatile tool for nuclear inspections Type Journal Article
  Year 2024 Publication EPJ Techniques and Instrumentation Abbreviated Journal EPJ Tech. Instrum.  
  Volume 11 Issue 1 Pages 2 - 17pp  
  Keywords Gamma imaging; Neutron imaging; Nuclear inspections; Homeland security; Nuclear waste characterization  
  Abstract This work presents GN-Vision, a novel dual gamma-ray and neutron imaging system, which aims at simultaneously obtaining information about the spatial origin of gamma-ray and neutron sources. The proposed device is based on two position sensitive detection planes and exploits the Compton imaging technique for the imaging of gamma-rays. In addition, spatial distributions of slow- and thermal-neutron sources (<100 eV) are reconstructed by using a passive neutron pin-hole collimator attached to the first detection plane. The proposed gamma-neutron imaging device could be of prime interest for nuclear safety and security applications. The two main advantages of this imaging system are its high efficiency and portability, making it well suited for nuclear applications were compactness and real-time imaging is important. This work presents the working principle and conceptual design of the GN-Vision system and explores, on the basis of Monte Carlo simulations, its simultaneous gamma-ray and neutron detection and imaging capabilities for a realistic scenario where a Cf-252 source is hidden in a neutron moderating container.  
  Address [Lerendegui-Marco, Jorge; Babiano-Suarez, Victor; Balibrea-Correa, Javier; Caballero, Luis; Calvo, David; Ladarescu, Ion; Domingo-Pardo, Cesar] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain, Email: jorge.lerendegui@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2195-7045 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001171512700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5975  
Permanent link to this record
 

 
Author Linhart, V.; Burdette, D.; Chessi, E.; Cindro, V.; Clinthorne, N.H.; Cochran, E.; Grosicar, B.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Mikuz, M.; Stankova, V.; Studen, A.; Weilhammer, P.; Zontar, D. doi  openurl
  Title (up) Spectroscopy study of imaging devices based on silicon Pixel Array Detector coupled to VATAGP7 read-out chips Type Journal Article
  Year 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 6 Issue Pages C01092 - 8pp  
  Keywords Gamma camera, SPECT, PET PET/CT, coronary CT angiography (CTA); Compton imaging  
  Abstract Spectroscopic and timing response studies have been conducted on a detector module consisting of a silicon Pixel Array Detector bonded on two VATAGP7 read-out chips manufactured by Gamma-Medica Ideas using laboratory gamma sources and the internal calibration facilities (the calibration system of the read-out chips). The performed tests have proven that the chips have (i) non-linear calibration curves which can be approximated by power functions, (ii) capability to measure the energy of photons with energy resolution better than 2 keV (exact range and resolution depend on experimental setup), (iii) the internal calibration facility which provides 6 out of 16 available internal calibration charges within our region of interest (spanning the Compton edge of 511 keV photons). The peaks induced by the internal calibration facility are suitable for a fit of the calibration curves. However, they are not suitable for measurements of equivalent noise charge because their full width at half maximum varies with their amplitude. These facts indicate that the VATAGP7 chips are useful and precise tools for a wide variety of spectroscopic devices. We have also explored time walk of the module and peaking time of the spectroscopy signals provided by the chips. We have observed that (iv) the time walk is caused partly by the peaking time of the signals provided by the fast shaper of the chips and partly by the timing uncertainty related to the varying position of the photon interaction, (v) the peaking time of the spectroscopy signals provided by the chips increases with increasing pulse height.  
  Address [Linhart, V.; Lacasta, C.; Llosa, G.; Stankova, V.] UVEG, CSIC, IFIC, Expt Phys Dept,Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Vladimir.Linhart@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291345600097 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 645  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva