toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cepedello, R.; Escribano, P.; Vicente, A. url  doi
openurl 
  Title (up) Neutrino masses, flavor anomalies, and muon g-2 from dark loops Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 107 Issue 3 Pages 035034 - 6pp  
  Keywords  
  Abstract The lepton sector of the Standard Model is at present haunted by several intriguing anomalies, including an emerging pattern of deviations in b ? sll processes, with hints of lepton flavor universality violation, and a discrepancy in the muon anomalous magnetic moment. More importantly, it cannot explain neutrino oscillation data, which necessarily imply the existence of nonzero neutrino masses and lepton mixings. We propose a model that accommodates all the aforementioned anomalies, induces neutrino masses and provides a testable dark matter candidate. This is achieved by introducing a dark sector contributing to the observables of interest at the 1-loop level. Our setup provides a very economical explanation to all these open questions in particle physics and is compatible with the current experimental constraints.  
  Address [Cepedello, Ricardo] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: ricardo.cepedello@physik.uni-wuerzburg.de;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001004183600012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5558  
Permanent link to this record
 

 
Author Boucenna, S.M.; Celis, A.; Fuentes-Martin, J.; Vicente, A.; Virto, J. url  doi
openurl 
  Title (up) Non-abelian gauge extensions for B-decay anomalies Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 760 Issue Pages 214-219  
  Keywords  
  Abstract We study the generic features of minimal gauge extensions of the Standard Model in view of recent hints of lepton-flavor non-universality in semi-leptonic b -> sl(+)l(-) and b -> cl nu decays. We classify the possible models according to the symmetry-breaking pattern and the source of flavor non-universality. We find that in viable models the SU(2)(L) factor is embedded non-trivially in the extended gauge group, and that gauge couplings should be universal, hinting to the presence of new degrees of freedom sourcing non-universality. Finally, we provide an explicit model that can explain the B-decay anomalies in a coherent way and confront it with the relevant phenomenological constraints.  
  Address [Boucenna, Sofiane M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, CP 13, I-100044 Frascati, Italy, Email: javier.fuentes@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000382890500032 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2803  
Permanent link to this record
 

 
Author Aoki, M.; Toma, T.; Vicente, A. url  doi
openurl 
  Title (up) Non-thermal production of minimal dark matter via right-handed neutrino decay Type Journal Article
  Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 063 - 19pp  
  Keywords dark matter theory; gamma ray theory; particle physics – cosmology connection; physics of the early universe  
  Abstract Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2)(L) quintuplet and a scalar SU(2)(L) septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.  
  Address [Aoki, Mayumi] Kanazawa Univ, Inst Theoret Phys, Kanazawa, Ishikawa 9201192, Japan, Email: mayumi@hep.s.kanazawa-u.ac.jp;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000365690000063 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2479  
Permanent link to this record
 

 
Author Escribano, P.; Hirsch, M.; Nava, J.; Vicente, A. url  doi
openurl 
  Title (up) Observable flavor violation from spontaneous lepton number breaking Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 098 - 31pp  
  Keywords Beyond Standard Model; Neutrino Physics; Global Symmetries  
  Abstract We propose a simple model of spontaneous lepton number violation with potentially large flavor violating decays, including the possibility that majoron emitting decays, such as μ-> e J, saturate the experimental bounds. In this model the majoron is a singlet-doublet admixture. It generates a type-I seesaw for neutrino masses and contains also a vector-like lepton. As a by-product, the model can explain the anomalous (g – 2)(mu), in parts of its parameter space, where one expects that the branching ratio of the Higgs to muons is changed with respect to Standard Model expectations. However, the explanation of the muon g – 2 anomaly would lead to tension with recent astrophysical bounds on the majoron coupling to muons.  
  Address [Escribano, Pablo; Hirsch, Martin; Nava, Jacopo; Vicente, Avelino] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,C Catedrcit Jose Beltrcin 2, E-46980 Valencia, Spain, Email: pablo.escribano@ifis.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000744514600003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5084  
Permanent link to this record
 

 
Author Boucenna, S.M.; Celis, A.; Fuentes-Martin, J.; Vicente, A.; Virto, J. url  doi
openurl 
  Title (up) Phenomenology of an SU(2) x SU(2) x U(1) model with lepton-flavour non-universality Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 059 - 43pp  
  Keywords Beyond Standard Model; Gauge Symmetry  
  Abstract We investigate a gauge extension of the Standard Model in light of the observed hints of lepton universality violation in b -> clv and b -> sl(+) l(-) decays at BaBar, Belle and LHCb. The model consists of an extended gauge group SU(2)(1) x SU(2)(2) x U(l)(Y) which breaks spontaneously around the TeV scale to the electroweak gauge group. Fermion mixing effects with vector -like fermions give rise to potentially large new physics contributions in flavour transitions mediated by WI and Z' bosons. This model can ease tensions in B -physics data while satisfying stringent bounds from flavour physics, and electroweak precision data. Possible ways to test the proposed new physics scenario with upcoming experimental measurements are discussed. Among other predictions, the ratios RM =Gamma(B -> M mu(+)mu(-))/Gamma(B -> Me(+)e(-)), with M = K*, phi, are found to be reduced with respect to the Standard Model expectation R-M similar or equal to 1.  
  Address [Boucenna, Sofiane M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Via Enrico Fermi 40, I-100044 Frascati, Italy, Email: boucenna@lnf.infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399290600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3063  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva