|   | 
Details
   web
Records
Author Breso-Pla, V.; Falkowski, A.; Gonzalez-Alonso, M.
Title (up) A(FB) in the SMEFT: precision Z physics at the LHC Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 021 - 27pp
Keywords Beyond Standard Model; Effective Field Theories
Abstract We study the forward-backward asymmetry A(FB) in pp -> l(+)l(-) at the Z peak within the Standard Model Effective Field Theory (SMEFT). We find that this observable provides per mille level constraints on the vertex corrections of the Z boson to quarks, which close a flat direction in the electroweak precision SMEFT fit. Moreover, we show that current A(FB) data is precise enough so that its inclusion in the fit improves significantly LEP bounds even in simple New Physics setups. This demonstrates that the LHC can compete with and complement LEP when it comes to precision measurements of the Z boson properties.
Address [Breso-Pla, Victor; Gonzalez-Alonso, Martin] Univ Valencia, Dept Fis Teor, IFIC, CSIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: vicbreso@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000683833600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4935
Permanent link to this record
 

 
Author Centelles Chulia, S.; Cepedello, R.; Medina, O.
Title (up) Absolute neutrino mass scale and dark matter stability from flavour symmetry Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 080 - 23pp
Keywords Discrete Symmetries; Flavour Symmetries; Neutrino Mixing; Particle Nature of Dark Matter
Abstract We explore a simple but extremely predictive extension of the scotogenic model. We promote the scotogenic symmetry Z(2) to the flavour non-Abelian symmetry sigma(81), which can also automatically protect dark matter stability. In addition, sigma(81) leads to striking predictions in the lepton sector: only Inverted Ordering is realised, the absolute neutrino mass scale is predicted to be m(lightest)approximate to 7.5x10(-4) eV and the Majorana phases are correlated in such a way that vertical bar m(ee)vertical bar approximate to 0.018 eV. The model also leads to a strong correlation between the solar mixing angle theta(12) and delta(CP), which may be falsified by the next generation of neutrino oscillation experiments. The setup is minimal in the sense that no additional symmetries or flavons are required.
Address [Chulia, Salvador Centelles] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: chulia@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000867661300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5387
Permanent link to this record
 

 
Author Lavoura, L.; Morisi, S.; Valle, J.W.F.
Title (up) Accidental stability of dark matter Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 118 - 17pp
Keywords Beyond Standard Model; Neutrino Physics; Discrete and Finite Symmetries
Abstract We propose that dark matter is stable as a consequence of an accidental Z(2) that results from a flavour symmetry group which is the double-cover group of the symmetry group of one of the regular geometric solids. Although model-dependent, the phenomenology resembles that of a generic “inert Higgs” dark matter scheme.
Address [Lavoura, L.] Univ Tecn Lisboa, CFTP, Inst Super Tecn, P-1049001 Lisbon, Portugal, Email: balio@cftp.ist.utl.pt;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000316273700041 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1383
Permanent link to this record
 

 
Author Thakore, T.; Devi, M.M.; Agarwalla, S.K.; Dighe, A.
Title (up) Active-sterile neutrino oscillations at INO-ICAL over a wide mass-squared range Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 022 - 34pp
Keywords Neutrino Physics; Beyond Standard Model
Abstract We perform a detailed analysis for the prospects of detecting active-sterile oscillations involving a light sterile neutrino, over a large Delta m(41)(2 )range of 10(-5) eV(2) to 10(2) eV(2), using 10 years of atmospheric neutrino data expected from the proposed 50 kt magnetized ICAL detector at the INO. This detector can observe the atmospheric nu(mu), and (nu) over bar (mu) separately over a wide range of energies and baselines, making it sensitive to the magnitude and sign of Arni i over a large range. If there is no light sterile neutrino, ICAL can place competitive upper limit on vertical bar U-mu 4 vertical bar(2) less than or similar to 0.02 at 90% C.L. for Delta m(41)(2) in the range (0.5-5) x 10(-3) eV(2). For the same vertical bar Delta m(41)(2)vertical bar range, ICAL would be able to determine its sign, exploiting the Earth's matter effect in mu(-) and mu(+) events separately if there is indeed a light sterile neutrino in Nature. This would help identify the neutrino mass ordering in the four-neutrino mixing scenario.
Address [Thakore, Tarak] Louisiana State Univ, Baton Rouge, LA 70803 USA, Email: tarak.thakore@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000441224700009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3691
Permanent link to this record
 

 
Author Coloma, P.; Esteban, I.; Gonzalez-Garcia, M.C.; Maltoni, M.
Title (up) Addendum to: Improved global fit to non-standard neutrino interactions using COHERENT energy and timing data Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 071 - 6pp
Keywords
Abstract In this addendum we re-assess the constraints on Non-Standard Interactions (NSI) from the combined analysis of data from oscillation experiments and from COHERENT after including the new data released since the publication of ref. [1].
Address [Coloma, Pilar] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Calle Catedrat Jose Beltran, E-46980 Valencia, Spain, Email: pcoloma@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000600015400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4656
Permanent link to this record