|   | 
Details
   web
Records
Author Sierra, D.A.; De Romeri, V.; Flores, L.J.; Papoulias, D.K.
Title (down) Impact of COHERENT measurements, cross section uncertainties and new interactions on the neutrino floor Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue 1 Pages 055 - 26pp
Keywords dark matter detectors; dark matter experiments; neutrino properties; solar and atmospheric neutrinos
Abstract We reconsider the discovery limit of multi-ton direct detection dark matter experiments in the light of recent measurements of the coherent elastic neutrino-nucleus scattering process. Assuming the cross section to be a parameter entirely determined by data, rather than using its Standard Model prediction, we use the COHERENT CsI and LAr data sets to determine WIMP discovery limits. Being based on a data-driven approach, the results are thus free from theoretical assumptions and fall within the WIMP mass regions where XENONnT and DARWIN have best expected sensitivities. We further determine the impact of subleading nuclear form factor and weak mixing angle uncertainties effects on WIMP discovery limits. We point out that these effects, albeit small, should be taken into account. Moreover, to quantify the impact of new physics effects in the neutrino background, we revisit WIMP discovery limits assuming light vector and scalar mediators as well as neutrino magnetic moments/transitions. We stress that the presence of new interactions in the neutrino sector, in general, tend to worsen the WIMP discovery limit.
Address [Aristizabal Sierra, D.] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110-5,Avda Espana 1680, Valparaiso, Chile, Email: daristizabal@ulg.ac.be;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000751303400010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5123
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Tortola, M.; Valle, J.W.F.
Title (down) Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 9 Pages 092012 - 22pp
Keywords
Abstract Measurements of electrons from ?e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectra is derived, and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.
Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: zdjurcic@anl.gov;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001010953400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5588
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Tortola, M.; Tuzi, M.; Valle, J.W.F.; Yahlali, N.
Title (down) Highly-parallelized simulation of a pixelated LArTPC on a GPU Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 4 Pages P04034 - 35pp
Keywords Detector modelling and simulations II (electric fields, charge transport, multiplication, and induction, pulse formation, electron emission, etc); Simulation methods and programs; Nobleliquid detectors (scintillation, ionization, double-phase); Time projection Chambers (TPC)
Abstract The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 103 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype.
Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: roberto@lbl.gov
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000986658100009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5551
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title (down) First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform Type Journal Article
Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 15 Issue 12 Pages P12004 - 100pp
Keywords Large detector systems for particle and astroparticle physics; Noble liquid detectors (scintillation, ionization, double-phase); Time projection Chambers (TPC)
Abstract The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2 x 6.1 x 7.0 m(3). It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP's performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP's successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design.
Address [Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: cavanna@fnal.gov;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000595944800004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4643
Permanent link to this record
 

 
Author Abada, A.; De Romeri, V.; Lucente, M.; Teixeira, A.M.; Toma, T.
Title (down) Effective Majorana mass matrix from tau and pseudoscalar meson lepton number violating decays Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 169 - 57pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract An observation of any lepton number violating process will undoubtedly point towards the existence of new physics and indirectly to the clear Majorana nature of the exchanged fermion. In this work, we explore the potential of a minimal extension of the Standard Model via heavy sterile fermions with masses in the [0.1-10] GeV range concerning an extensive array of “neutrinoless” meson and tau decay processes. We assume that the Majorana neutrinos are produced on-shell, and focus on three-body decays. We conduct an update on the bounds on the active-sterile mixing elements, vertical bar U-l alpha 4,U-l beta 4 vertical bar, taking into account the most recent experimental bounds (and constraints) and new theoretical inputs, as well as the effects of a finite detector, imposing that the heavy neutrino decay within the detector. This allows to establish up-to-date comprehensive constraints on the sterile fermion parameter space. Our results suggest that the branching fractions of several decays are close to current sensitivities (likely within reach of future facilities), some being already in conflict with current data (as is the case of K-broken vertical bar -> l(alpha)(broken vertical bar)+l(beta)(+)pi(-), and tau(-)->mu(broken vertical bar)pi(-)pi(-)). We use these processes to extract constraints on all entries of an enlarged definition of a 3 x 3 “effective” Majorana neutrino mass matrix m(v)(alpha beta).
Address [Abada, Asmaa] Univ Paris Saclay, Univ Paris Sud, CNRS, Lab Phys Theor, 15 Rue Georges Clemenceau, F-91405 Orsay, France, Email: abada@th.u-psud.fr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000426478100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3511
Permanent link to this record