|   | 
Details
   web
Records
Author Aguilar, A.C.; Binosi, D.; Ibañez, D.; Papavassiliou, J.
Title (down) New method for determining the quark-gluon vertex Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 6 Pages 065027 - 26pp
Keywords
Abstract We present a novel nonperturbative approach for calculating the form factors of the quark-gluon vertex in terms of an unknown three-point function, in the Landau gauge. The key ingredient of this method is the exact all-order relation connecting the conventional quark-gluon vertex with the corresponding vertex of the background field method, which is Abelian-like. When this latter relation is combined with the standard gauge technique, supplemented by a crucial set of transverse Ward identities, it allows the approximate determination of the nonperturbative behavior of all 12 form factors comprising the quark-gluon vertex, for arbitrary values of the momenta. The actual implementation of this procedure is carried out in the Landau gauge, in order to make contact with the results of lattice simulations performed in this particular gauge. The most demanding technical aspect involves the approximate calculation of the components of the aforementioned (fully dressed) three-point function, using lattice data as input for the gluon propagators appearing in its diagrammatic expansion. The numerical evaluation of the relevant form factors in three special kinematical configurations (soft-gluon and quark symmetric limit, zero quark momentum) is carried out in detail, finding qualitative agreement with the available lattice data. Most notably, a concrete mechanism is proposed for explaining the puzzling divergence of one of these form factors observed in lattice simulations.
Address [Aguilar, A. C.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Sao Paulo, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000342147700012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1932
Permanent link to this record
 

 
Author Binosi, D.; Chang, L.; Papavassiliou, J.; Qin, S.X.; Roberts, C.D.
Title (down) Natural constraints on the gluon-quark vertex Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 95 Issue 3 Pages 031501 - 7pp
Keywords
Abstract In principle, the strong-interaction sector of the standard model is characterized by a unique renormalization-group-invariant (RGI) running interaction and a unique form for the dressed-gluonquark vertex, Gamma mu; but, whilst much has been learnt about the former, the latter is still obscure. In order to improve this situation, we use a RGI running-interaction that reconciles top-down and bottom-up analyses of the gauge sector in quantum chromodynamics (QCD) to compute dressed-quark gap equation solutions with 1,660,000 distinct Ansatze for Gamma mu. Each one of the solutions is then tested for compatibility with three physical criteria and, remarkably, we find that merely 0.55% of the solutions survive the test. Evidently, even a small selection of observables places extremely tight bounds on the domain of realistic vertex Ansatze. This analysis and its results should prove useful in constraining insightful contemporary studies of QCD and hadronic phenomena.
Address [Binosi, Daniele] European Ctr Theoret Studies Nucl Phys & Related, Str Tabarelle 286, I-38123 Villazzano, TN, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000393507500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2953
Permanent link to this record
 

 
Author Aguilar, A.C.; Ibañez, D.; Mathieu, V.; Papavassiliou, J.
Title (down) Massless bound-state excitations and the Schwinger mechanism in QCD Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 85 Issue 1 Pages 014018 - 21pp
Keywords
Abstract The gauge-invariant generation of an effective gluon mass proceeds through the well-known Schwinger mechanism, whose key dynamical ingredient is the nonperturbative formation of longitudinally coupled massless bound-state excitations. These excitations introduce poles in the vertices of the theory, in such a way as to maintain the Slavnov-Taylor identities intact in the presence of massive gluon propagators. In the present work we first focus on the modifications induced to the nonperturbative three-gluon vertex by the inclusion of massless two-gluon bound states into the kernels appearing in its skeleton expansion. Certain general relations between the basic building blocks of these bound states and the gluon mass are then obtained from the Slavnov-Taylor identities and the Schwinger-Dyson equation governing the gluon propagator. The homogeneous Bethe-Salpeter equation determining the wave function of the aforementioned bound state is then derived, under certain simplifying assumptions. It is then shown, through a detailed analytical and numerical study, that this equation admits nontrivial solutions, indicating that the QCD dynamics support indeed the formation of such massless bound states. These solutions are subsequently used, in conjunction with the aforementioned relations, to determine the momentumdependence of the dynamical gluon mass. Finally, further possibilities and open questions are briefly discussed.
Address [Aguilar, A. C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000299293600005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 881
Permanent link to this record
 

 
Author MoEDAL Collaboration (Acharya, B. et al); Bernabeu, J.; Mamuzic, J.; Mitsou, V.A.; Papavassiliou, J.; Ruiz de Austri, R.; Santra, A.; Vento, V.; Vives, O.
Title (down) Magnetic Monopole Search with the Full MoEDAL Trapping Detector in 13 TeV pp Collisions Interpreted in Photon-Fusion and Drell-Yan Production Type Journal Article
Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 123 Issue 2 Pages 021802 - 7pp
Keywords
Abstract MoEDAL is designed to identify new physics in the form of stable or pseudostable highly ionizing particles produced in high-energy Large Hadron Collider (LHC) collisions. Here we update our previous search for magnetic monopoles in Run 2 using the full trapping detector with almost four times more material and almost twice more integrated luminosity. For the first time at the LHC, the data were interpreted in terms of photon-fusion monopole direct production in addition to the Drell-Yan-like mechanism. The MoEDAL trapping detector, consisting of 794 kg of aluminum samples installed in the forward and lateral regions, was exposed to 4.0 fb(-1) of 13 TeV proton-proton collisions at the LHCb interaction point and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges equal to or above the Dirac charge are excluded in all samples. Monopole spins 0, 1/2, and 1 are considered and both velocity-independent and-dependent couplings are assumed. This search provides the best current laboratory constraints for monopoles with magnetic charges ranging from two to five times the Dirac charge.
Address [Acharya, B.; Alexandre, J.; Baines, S.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London, England, Email: vasiliki.mitsou@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000474894200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4077
Permanent link to this record
 

 
Author Pinto-Gomez, F.; De Soto, F.; Ferreira, M.N.; Papavassiliou, J.; Rodriguez-Quintero, J.
Title (down) Lattice three-gluon vertex in extended kinematics: Planar degeneracy Type Journal Article
Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 838 Issue Pages 137737 - 8pp
Keywords QCD; Three-gluon vertex; Lattice QCD; Schwinger-Dyson equations
Abstract We present novel results for the three-gluon vertex, obtained from an extensive quenched lattice simulation in the Landau gauge. The simulation evaluates the transversely projected vertex, spanned on a special tensorial basis, whose form factors are naturally parametrized in terms of individually Bosesymmetric variables. Quite interestingly, when evaluated in these kinematics, the corresponding form factors depend almost exclusively on a single kinematic variable, formed by the sum of the squares of the three incoming four-momenta, q, r, and p. Thus, all configurations lying on a given plane in the coordinate system (q2, r2, p2) share, to a high degree of accuracy, the same form factors, a property that we denominate planar degeneracy. We have confirmed the validity of this property through an exhaustive study of the set of configurations satisfying the condition q2 = r2, within the range [0, 5 GeV]. This drastic simplification allows for a remarkably compact description of the main bulk of the data, which is particularly suitable for future numerical applications. A semi-perturbative analysis reproduces the lattice findings rather accurately, once the inclusion of a gluon mass has cured all spurious divergences.
Address [Pinto-Gomez, F.; De Soto, F.] Univ Pablo de Olavide, Dpto Sistemas Fis Quim & Nat, Seville 41013, Spain, Email: jose.rodriguez@dfaie.uhu.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000953425400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5503
Permanent link to this record
 

 
Author Aguilar, A.C.; De Soto, F.; Ferreira, M.N.; Papavassiliou, J.; Rodriguez-Quintero, J.
Title (down) Infrared facets of the three-gluon vertex Type Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 818 Issue Pages 136352 - 7pp
Keywords QCD; Three-gluon vertex; Lattice QCD; Schwinger-Dyson equations
Abstract We present novel lattice results for the form factors of the quenched three-gluon vertex of QCD, in two special kinematic configurations that depend on a single momentum scale. We consider three form factors, two associated with a classical tensor structure and one without tree-level counterpart, exhibiting markedly different infrared behaviors. Specifically, while the former display the typical suppression driven by a negative logarithmic singularity at the origin, the latter saturates at a small negative constant. These exceptional features are analyzed within the Schwinger-Dyson framework, with the aid of special relations obtained from the Slavnov-Taylor identities of the theory. The emerging picture of the underlying dynamics is thoroughly corroborated by the lattice results, both qualitatively as well as quantitatively.
Address [Aguilar, A. C.; Ferreira, M. N.] Univ Estadual Campinas, Inst Phys Gleb Wataghin, UNICAMP, BR-13083859 Campinas, SP, Brazil, Email: jose.rodriguez@dfaie.uhu.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000662629500036 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4865
Permanent link to this record
 

 
Author Aguilar, A.C.; De Soto, F.; Ferreira, M.N.; Papavassiliou, J.; Rodriguez-Quintero, J.; Zafeiropoulos, S.
Title (down) Gluon propagator and three-gluon vertex with dynamical quarks Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 2 Pages 154 - 17pp
Keywords
Abstract We present a detailed analysis of the kinetic and mass terms associated with the Landau gauge gluon propagator in the presence of dynamical quarks, and a comprehensive dynamical study of certain special kinematic limits of the three-gluon vertex. Our approach capitalizes on results from recent lattice simulations with (2+1) domain wall fermions, a novel nonlinear treatment of the gluon mass equation, and the nonperturbative reconstruction of the longitudinal three-gluon vertex from its fundamental Slavnov-Taylor identities. Particular emphasis is placed on the persistence of the suppression displayed by certain combinations of the vertex form factors at intermediate and low momenta, already known from numerous pure Yang-Mills studies. One of our central findings is that the inclusion of dynamical quarks moderates the intensity of this phenomenon only mildly, leaving the asymptotic low-momentum behavior unaltered, but displaces the characteristic “zero crossing” deeper into the infrared region. In addition, the effect of the three-gluon vertex is explored at the level of the effective gauge coupling, whose size is considerably reduced with respect to its counterpart obtained from the ghost-gluon vertex. The main upshot of the above considerations is the further confirmation of the tightly interwoven dynamics between the two- and three-point sectors of QCD.
Address [Aguilar, A. C.; Ferreira, M. N.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000517203200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4314
Permanent link to this record
 

 
Author Aguilar, A.C.; Binosi, D.; Papavassiliou, J.
Title (down) Gluon mass through ghost synergy Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 050 - 32pp
Keywords Nonperturbative Effects; QCD
Abstract In this work we compute, at the “one-loop-dressed” level, the nonperturbative contribution of the ghost loops to the self-energy of the gluon propagator, in the Landau gauge. This is accomplished within the PT-BFM formalism, where the contribution of the ghost-loops is inherently transverse, by virtue of the QED-like Ward identities satisfied in this framework. At the level of the “one-loop dressed” approximation, the ghost transversality is preserved by employing a suitable gauge-technique Ansatz for the longitudinal part of the full ghost-gluon vertex. Under the key assumption that the undetermined transverse part of this vertex is numerically subleading in the infrared, and using as nonperturbative input the available lattice data for the ghost dressing function, we show that the ghost contributions have a rather sizable effect on the overall shape of the gluon propagator, both for d = 3, 4. Then, by exploiting a recently introduced dynamical equation for the effective gluon mass, whose solutions depend crucially on the characteristics of the gluon propagator at intermediate energies, we show that if the ghost loops are removed from the gluon propagator then the gluon mass vanishes. These findings suggest that, at least at the level of the Schwinger-Dyson equations, the effects of gluons and ghosts are inextricably connected, and must be combined suitably in order to reproduce the results obtained in the recent lattice simulations.
Address [Aguilar, A. C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil, Email: arlene.aguilar@ufabc.edu.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000300181800050 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 969
Permanent link to this record
 

 
Author Aguilar, A.C.; Ferreira, M.N.; Figueiredo, C.T.; Papavassiliou, J.
Title (down) Gluon mass scale through nonlinearities and vertex interplay Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 9 Pages 094039 - 19pp
Keywords
Abstract We present a novel analysis of the gluon gap equation, where its full nonlinear structure is duly taken into account. In particular, while in previous treatments the linearization of this homogeneous integral equation introduced an indeterminacy in the scale of the corresponding mass, the current approach determines it uniquely, once the value of the gauge coupling at a given renormalization point is used as input. A crucial ingredient for this construction is the “kinetic term” of the gluon propagator, whose form is not obtained from the complicated equation governing its evolution, but is rather approximated by suitable initial Ansatze, which are subsequently improved by means of a systematic iterative procedure. The multiplicative renormalization of the central equation is carried out following an approximate method, which is extensively employed in the studies of the standard quark gap equation. This approach amounts to the effective substitution of the vertex renormalization constants by kinematically simplified form factors of the three- and four-gluon vertices. The resulting numerical interplay, exemplified by the infrared suppression of the three-gluon vertex and the mild enhancement of the four-gluon vertex, is instrumental for obtaining positive-definite and monotonically decreasing running gluon masses. The resulting gluon propagators, put together from the gluon masses and kinetic terms obtained with this method, match rather accurately the data obtained from large-volume lattice simulations.
Address [Aguilar, A. C.; Ferreira, M. N.; Figueiredo, C. T.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000498877900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4208
Permanent link to this record
 

 
Author Aguilar, A.C.; Papavassiliou, J.
Title (down) Gluon mass generation without seagull divergences Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 81 Issue 3 Pages 034003 - 19pp
Keywords
Abstract Dynamical gluon mass generation has been traditionally plagued with seagull divergences, and all regularization procedures proposed over the years yield finite but scheme-dependent gluon masses. In this work we show how such divergences can be eliminated completely by virtue of a characteristic identity, valid in dimensional regularization. The ability to trigger the aforementioned identity hinges crucially on the particular Ansatz employed for the three-gluon vertex entering into the Schwinger-Dyson equation governing the gluon propagator. The use of the appropriate three-gluon vertex brings about an additional advantage: one obtains two separate (but coupled) integral equations, one for the effective charge and one for the gluon mass. This system of integral equations has a unique solution, which unambiguously determines these two quantities. Most notably, the effective charge freezes in the infrared, and the gluon mass displays power-law running in the ultraviolet, in agreement with earlier considerations.
Address [Aguilar, Arlene C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000275069000024 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 493
Permanent link to this record