toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bandyopadhyay, P.; Jangid, S.; Karan, A. url  doi
openurl 
  Title (up) Constraining scalar doublet and triplet leptoquarks with vacuum stability and perturbativity Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 6 Pages 516 - 44pp  
  Keywords  
  Abstract We investigate the constraints on the leptoquark Yukawa couplings and the Higgs-leptoquark quartic couplings for scalar doublet leptoquark (R) over tilde (2), scalar triplet leptoquark S-3 and their combination with both three generations and one generation with respect to perturbative unitarity and vacuum stability. The perturbative unitarity of all the dimensionless couplings is studied via one- and two-loop beta functions. New SU(2)(L) multiplets in terms of these leptoquarks are introduced to fabricate Landau poles at the two-loop level in the gauge coupling g(2) at 10(19.7) GeV and 10(14.4) GeV, respectively, for the S-3 and (R) over tilde (2) + S-3 models with three generations. However, such Landau poles cease to exist for (R) over tilde (2) and any of these extensions with both one and two generations up to Planck scale. The Higgs-leptoquark quartic couplings acquire severe constraints to protect Planck scale perturbativity, whereas leptoquark Yukawa couplings acquire some upper bound in order to respect Planck scale stability of Higgs vacuum. The Higgs quartic coupling at the two-loop level constrains the leptoquark Yukawa couplings for (R) over tilde (2), S-3, (R) over tilde (2) + S-3 with values less than or similar to 1.30, 3.90, 1.00 with three generations. In the effective potential approach, the presence of any of these leptoquarks with any number of generations pushes the metastable vacuum of the Standard Model to the stable region.  
  Address [Bandyopadhyay, Priyotosh; Jangid, Shilpa; Karan, Anirban] Indian Inst Technol Hyderabad, Sangareddy 502284, Telangana, India, Email: bpriyo@phy.iith.ac.in;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000808355200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5251  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title (up) Constraining the contribution of Gamma-Ray Bursts to the high-energy diffuse neutrino flux with 10 yr of ANTARES data Type Journal Article
  Year 2021 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 500 Issue 4 Pages 5614-5628  
  Keywords acceleration of particles; neutrinos; transients: gamma-ray bursts; astroparticle physics  
  Abstract Addressing the origin of the astrophysical neutrino flux observed by IceCube is of paramount importance. Gamma-Ray Bursts (GRBs) are among the few astrophysical sources capable of achieving the required energy to contribute to such neutrino flux through p gamma interactions. In this work, ANTARFS data have been used to search for upward going muon neutrinos in spatial and temporal coincidence with 784 GRBs occurred from 2007 to 2017. For each GRB, the expected neutrino flux has been calculated in the framework of the internal shock model and the impact of the lack of knowledge on the majority of source redshifts and on other intrinsic parameters of the emission mechanism has been quantified. It is found that the model parameters that set the radial distance where shock collisions occur have the largest impact on neutrino flux expectations. In particular, the bulk Lorentz factor of the source ejecta and the minimum variability time-scale are found to contribute significantly to the GRB-neutrino flux uncertainty. For the selected sources, ANTARES data have been analysed by maximizing the discovery probability of the stacking sample through an extended maximum-likelihood strategy. Since no neutrino event passed the quality cuts set by the optimization procedure, 90 per cent confidence level upper limits (with their uncertainty) on the total expected diffuse neutrino flux have been derived, according to the model. The GRB contribution to the observed diffuse astrophysical neutrino flux around 100 TeV is constrained to be less than 10 percent.  
  Address [Albert, A.; Drouhin, D.; Huang, F.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: silvia.celli@roma1.infn.it;  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000606297700092 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4677  
Permanent link to this record
 

 
Author Bernard, V.; Descotes-Genon, S.; Vale Silva, L. url  doi
openurl 
  Title (up) Constraining the gauge and scalar sectors of the doublet left-right symmetric model Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 088 - 64pp  
  Keywords Beyond Standard Model; GUT  
  Abstract We consider a left-right symmetric extension of the Standard Model where the spontaneous breakdown of the left-right symmetry is triggered by doublets. The electroweak rho parameter is protected from large corrections in this Doublet Left-Right Model (DLRM), contrary to the triplet case. This allows in principle for more diverse patterns of symmetry breaking. We consider several constraints on the gauge and scalar sectors of DLRM: the unitarity of scattering processes involving gauge bosons with longitudinal polarisations, the radiative corrections to the muon Delta r parameter and the electroweak precision observables measured at the Z pole and at low energies. Combining these constraints within the frequentist CKMfitter approach, we see that the fit pushes the scale of left-right symmetry breaking up to a few TeV, while favouring an electroweak symmetry breaking triggered not only by the SU (2)(L) x SU (2)(R) bi-doublet, which is the case most commonly considered in the literature, but also by the SU (2)(L) doublet.  
  Address [Bernard, Veronique] Univ Paris Saclay, Univ Paris Sud, Grp Phys Theor, Inst Phys Nucl,UMR 8606,CNRS, F-91405 Orsay, France, Email: veronique.bernard@ijclab.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000569357600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4533  
Permanent link to this record
 

 
Author de Salas, P.F.; Pastor, S.; Ternes, C.A.; Thakore, T.; Tortola, M. url  doi
openurl 
  Title (up) Constraining the invisible neutrino decay with KM3NeT-ORCA Type Journal Article
  Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 789 Issue Pages 472-479  
  Keywords Neutrino masses and mixing; Neutrino oscillations; Neutrino decay; Neutrino telescopes  
  Abstract Several theories of particle physics beyond the Standard Model consider that neutrinos can decay. In this work we assume that the standard mechanism of neutrino oscillations is altered by the decay of the heaviest neutrino mass state into a sterile neutrino and, depending on the model, a scalar or a Majoron. We study the sensitivity of the forthcoming KM3NeT-ORCA experiment to this scenario and find that it could improve the current bounds coming from oscillation experiments, where three-neutrino oscillations have been considered, by roughly two orders of magnitude. We also study how the presence of this neutrino decay can affect the determination of the atmospheric oscillation parameters sin(2) theta(23) and Delta m(31)(2), as well as the sensitivity to the neutrino mass ordering.  
  Address [de Salas, P. F.; Pastor, S.; Ternes, C. A.; Thakore, T.; Tortola, M.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pabferde@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000457165400063 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3902  
Permanent link to this record
 

 
Author Mena, O.; Palomares-Ruiz, S.; Villanueva-Domingo, P.; Witte, S.J. url  doi
openurl 
  Title (up) Constraining the primordial black hole abundance with 21-cm cosmology Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 4 Pages 043540 - 23pp  
  Keywords  
  Abstract The discoveries of a number of binary black hole mergers by LIGO and VIRGO have reinvigorated the interest that primordial black holes (PBHs) of tens of solar masses could contribute non-negligibly to the dark matter energy density. Should even a small population of PBHs with masses greater than or similar to O(M-circle dot) exist, they could profoundly impact the properties of the intergalactic medium and provide insight into novel processes at work in the early Universe. We demonstrate here that observations of the 21-cm transition in neutral hydrogen during the epochs of reionization and cosmic dawn will likely provide one of the most stringent tests of solar mass PBHs. In the context of 21-cm cosmology, PBHs give rise to three distinct observable effects: (i) the modification to the primordial power spectrum (and thus also the halo mass function) induced by Poisson noise, (ii) a uniform heating and ionization of the intergalactic medium via x-rays produced during accretion, and (iii) a local modification to the temperature and density of the ambient medium surrounding isolated PBHs. Using a four-parameter astrophysical model, we show that experiments like SKA and HERA could potentially improve upon existing constraints derived using observations of the cosmic microwave background by more than 1 order of magnitude.  
  Address [Mena, Olga; Palomares-Ruiz, Sergio; Villanueva-Domingo, Pablo; Witte, Samuel J.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000483047300003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4122  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva