|   | 
Details
   web
Records
Author Albiol, F.; Corbi, A.; Albiol, A.
Title (up) Geometrical Calibration of X-Ray Imaging With RGB Cameras for 3D Reconstruction Type Journal Article
Year 2016 Publication IEEE Transactions on Medical Imaging Abbreviated Journal IEEE Trans. Med. Imaging
Volume 35 Issue 8 Pages 1952-1961
Keywords 3D reconstruction; camera system; geometric calibration; visible fiducials; X-ray imaging
Abstract We present a methodology to recover the geometrical calibration of conventional X-ray settings with the help of an ordinary video camera and visible fiducials that are present in the scene. After calibration, equivalent points of interest can be easily identifiable with the help of the epipolar geometry. The same procedure also allows the measurement of real anatomic lengths and angles and obtains accurate 3D locations from image points. Our approach completely eliminates the need for X-ray-opaque reference marks (and necessary supporting frames) which can sometimes be invasive for the patient, occlude the radiographic picture, and end up projected outside the imaging sensor area in oblique protocols. Two possible frameworks are envisioned: a spatially shifting X-ray anode around the patient/object and a moving patient that moves/rotates while the imaging system remains fixed. As a proof of concept, experiences with a device under test (DUT), an anthropomorphic phantom and a real brachytherapy session have been carried out. The results show that it is possible to identify common points with a proper level of accuracy and retrieve three-dimensional locations, lengths and shapes with a millimetric level of precision. The presented approach is simple and compatible with both current and legacy widespread diagnostic X-ray imaging deployments and it can represent a good and inexpensive alternative to other radiological modalities like CT.
Address [Albiol, Francisco; Corbi, Alberto] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular IFIC, Paterna 46980, Spain, Email: kiko@ific.uv.es;
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0278-0062 ISBN Medium
Area Expedition Conference
Notes WOS:000381436000016 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2781
Permanent link to this record
 

 
Author Bertone, G.; Calore, F.; Caron, S.; Ruiz de Austri, R.; Kim, J.S.; Trotta, R.; Weniger, C.
Title (up) Global analysis of the pMSSM in light of the Fermi GeV excess: prospects for the LHC Run-II and astroparticle experiments Type Journal Article
Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 037 - 20pp
Keywords dark matter detectors; dark matter theory; gamma ray experiments; supersymmetry and cosmology
Abstract We present a new global fit of the 19-dimensional phenomenological Minimal Supersymmetric Standard Model (pMSSM-19) that complies with all the latest experimental results from dark matter indirect, direct and accelerator dark matter searches. We show that the model provides a satisfactory explanation of the excess of gamma rays from the Galactic centre observed by the Fermi Large Area Telescope, assuming that it is produced by the annihilation of neutralinos in the Milky Way halo. We identify two regions that pass all the constraints: the first corresponds to neutralinos with a mass similar to 80 – 100 GeV annihilating into WW with a branching ratio of 95%; the second to heavier neutralinos, with mass similar to 180 – 200 GeV annihilating into (l) over barl with a branching ratio of 87%. We show that neutralinos compatible with the Galactic centre GeV excess will soon be within the reach of LHC run-II – notably through searches for charginos and neutralinos, squarks and light smuons – and of Xenon1T, thanks to its unprecedented sensitivity to spin-dependent cross-section off neutrons.
Address [Bertone, Gianfranco; Calore, Francesca; Weniger, Christoph] Univ Amsterdam, GRAPPA, Sci Pk 904, NL-1090 GL Amsterdam, Netherlands, Email: gf.bertone@gmail.com;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000393286400010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2951
Permanent link to this record
 

 
Author Durieux, G.; Perello, M.; Vos, M.; Zhang, C.
Title (up) Global and optimal probes for the top-quark effective field theory at future lepton colliders Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 168 - 68pp
Keywords Beyond Standard Model; Effective Field Theories; Heavy Quark Physics
Abstract We study the sensitivity to physics beyond the standard model of precise top-quark pair production measurements at future lepton colliders. A global effective-field-theory approach is employed, including all ten dimension-six operators of the Warsaw basis which involve a top-quark and give rise to tree-level amplitudes that interfere with standard-model e+e-tt ones in the limit of vanishing b-quark mass. Four-fermion and CP-violating contributions are taken into account. Circular-collider-, ILC- and CLIC-like benchmark run scenarios are examined. We compare the constraining power of various observables to a set of statistically optimal ones which maximally exploit the information contained in the fully differential bW+ distribution. The enhanced sensitivity gained on the linear contributions of dimension-six operators leads to bounds that are insensitive to quadratic ones. Even with statistically optimal observables, two centre-of-mass energies are required for constraining simultaneously two- and four-fermion operators. The impact of the centre-of-mass energy lever arm is discussed, that of beam polarization as well. A realistic estimate of the precision that can be achieved in ILC- and CLIC-like operating scenarios yields individual limits on the electroweak couplings of the top quark that are one to three orders of magnitude better than constraints set with Tevatron and LHC run I data, and three to two hundred times better than the most optimistic projections made for the high-luminosity phase of the LHC. Clean global constraints can moreover be obtained at lepton colliders, robustly covering the multidimensional effective-field-theory space with minimal model dependence.
Address [Durieux, Gauthier] DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: gauthier.durieux@desy.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000448812600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3786
Permanent link to this record
 

 
Author Escrihuela, F.J.; Flores, L.J.; Miranda, O.G.; Rendon, J.
Title (up) Global constraints on neutral-current generalized neutrino interactions Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 061 - 26pp
Keywords Beyond Standard Model; Effective Field Theories; Neutrino Physics
Abstract We study generalized neutrino interactions (GNI) for several neutrino processes, including neutrinos from electron-positron collisions, neutrino-electron scattering, and neutrino deep inelastic scattering. We constrain scalar, pseudoscalar, and tensor new physics effective couplings, based on the standard model effective field theory at low energies. We have performed a global analysis for the different effective couplings. We also present the different individual constraints for each effective parameter (scalar, pseudoscalar, and tensor). Being a global analysis, we show robust results for the restrictions on the different GNI parameters and improve some of these bounds.
Address [Escrihuela, F. J.] Univ Valencia, Inst Fis Corpuscular CSIC, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: franesfe@alumni.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000675383900009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4911
Permanent link to this record
 

 
Author Coloma, P.; Gonzalez-Garcia, M.C.; Maltoni, M.; Pinheiro, J.P.; Urrea, S.
Title (up) Global constraints on non-standard neutrino interactions with quarks and electrons Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 032 - 42pp
Keywords Neutrino Mixing; Non-Standard Neutrino Properties; Neutrino Interactions
Abstract We derive new constraints on effective four-fermion neutrino non-standard interactions with both quarks and electrons. This is done through the global analysis of neutrino oscillation data and measurements of coherent elastic neutrino-nucleus scattering (CE & nu;NS) obtained with different nuclei. In doing so, we include not only the effects of new physics on neutrino propagation but also on the detection cross section in neutrino experiments which are sensitive to the new physics. We consider both vector and axial-vector neutral-current neutrino interactions and, for each case, we include simultaneously all allowed effective operators in flavour space. To this end, we use the most general parametrization for their Wilson coefficients under the assumption that their neutrino flavour structure is independent of the charged fermion participating in the interaction. The status of the LMA-D solution is assessed for the first time in the case of new interactions taking place simultaneously with up quarks, down quarks, and electrons. One of the main results of our work are the presently allowed regions for the effective combinations of non-standard neutrino couplings, relevant for long-baseline and atmospheric neutrino oscillation experiments.
Address [Coloma, Pilar; Maltoni, Michele] UAM, Inst Fis Teor IFT, CSIC, CFTMAT, Calle Nicolas Cabrera 13-15,Campus Cantoblanco, E-28049 Madrid, Spain, Email: pilar.coloma@ift.csic.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001044930400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5606
Permanent link to this record
 

 
Author Murgui, C.; Peñuelas, A.; Jung, M.; Pich, A.
Title (up) Global fit to b -> c tau nu transitions Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 103 - 45pp
Keywords Beyond Standard Model; Effective Field Theories
Abstract We perform a general model-independent analysis of b -> c tau(nu) over bar (tau) transitions, including measurements of R-D, R-D*, their q(2) differential distributions, the recently measured longitudinal D* polarization F-L(D)*, and constraints from the B-c -> tau(nu) over bar (tau) lifetime, each of which has significant impact on the fit. A global fit to a general set of Wilson coefficients of an effective low-energy Hamiltonian is presented, the solutions of which are interpreted in terms of hypothetical new-physics mediators. From the obtained results we predict selected b -> c tau(nu) over bar (tau) observables, such as the baryonic transition Lambda(b) -> Lambda(c)tau(nu) over bar (tau), the ratio R-J/psi, the forward-backward asymmetries A(FB)(D()*()), the tau polarization asymmetries P-tau(D()*()), and the longitudinal D* polarization fraction F-L(D)*. The latter shows presently a slight tension with any new-physics model, such that an improved measurement could have an important impact. We also discuss the potential change due the very recently announced preliminary R-D(*) measurement by the Belle collaboration.
Address [Murgui, Clara; Penuelas, Ana; Pich, Antonio] Univ Valencia, IFIC, Dept Fis Teor, CSIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: Clara.Murgui@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000490861200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4177
Permanent link to this record
 

 
Author Aguilar, A.C.; Binosi, D.; Papavassiliou, J.
Title (up) Gluon mass through ghost synergy Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 050 - 32pp
Keywords Nonperturbative Effects; QCD
Abstract In this work we compute, at the “one-loop-dressed” level, the nonperturbative contribution of the ghost loops to the self-energy of the gluon propagator, in the Landau gauge. This is accomplished within the PT-BFM formalism, where the contribution of the ghost-loops is inherently transverse, by virtue of the QED-like Ward identities satisfied in this framework. At the level of the “one-loop dressed” approximation, the ghost transversality is preserved by employing a suitable gauge-technique Ansatz for the longitudinal part of the full ghost-gluon vertex. Under the key assumption that the undetermined transverse part of this vertex is numerically subleading in the infrared, and using as nonperturbative input the available lattice data for the ghost dressing function, we show that the ghost contributions have a rather sizable effect on the overall shape of the gluon propagator, both for d = 3, 4. Then, by exploiting a recently introduced dynamical equation for the effective gluon mass, whose solutions depend crucially on the characteristics of the gluon propagator at intermediate energies, we show that if the ghost loops are removed from the gluon propagator then the gluon mass vanishes. These findings suggest that, at least at the level of the Schwinger-Dyson equations, the effects of gluons and ghosts are inextricably connected, and must be combined suitably in order to reproduce the results obtained in the recent lattice simulations.
Address [Aguilar, A. C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil, Email: arlene.aguilar@ufabc.edu.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000300181800050 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 969
Permanent link to this record
 

 
Author Cosme, C.; Figueroa, D.G.; Loayza, N.
Title (up) Gravitational wave production from preheating with trilinear interactions Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 023 - 30pp
Keywords physics of the early universe; primordial gravitational waves (theory); gravita-tional waves; sources; particle physics-cosmology connection
Abstract We investigate the production of gravitational waves (GWs) during preheating with monomial/polynomial inflationary potentials, considering a trilinear coupling & phi;x2 between a singlet inflaton & phi; and a daughter scalar field x. For sufficiently large couplings, the trilinear interaction leads to an exponential production of x particles and, as a result, a large stochastic GW background (SGWB) is generated throughout the process. We study the linear and non-linear dynamics of preheating with lattice simulations, following the production of GWs through all relevant stages. We find that large couplings lead to SGWBs with amplitudes today that can reach up to h2 �(0) GW <^> 5 & BULL; 10-9. These backgrounds are however peaked at high frequencies fp > 5 & BULL; 106 Hz, which makes them undetectable by current/planned GW observatories. As the amount of GWs produced is in any case remarkable, we discuss the prospects for probing the SGWB indirectly by using constraints on the effective number of relativistic species in the universe Neff.
Address [Cosme, Catarina; Figueroa, Daniel G.; Loayza, Nicolas] Univ Valencia CSIC, Inst Fis Corpuscular IFIC, Parc Cientif UV,C-Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: catarina.cosme@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001038638500007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5660
Permanent link to this record
 

 
Author Agullo, I.; del Rio, A.; Navarro-Salas, J.
Title (up) Gravity and handedness of photons Type Journal Article
Year 2017 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D
Volume 26 Issue 12 Pages 1742001 - 5pp
Keywords Quantum fields in curved spacetime; symmetry and conservation laws; electromagnetic wave propagation; anomalies
Abstract Vacuum fluctuations of quantum fields are altered in the presence of a strong gravitational background, with important physical consequences. We argue that a nontrivial spacetime geometry can act as an optically active medium for quantum electromagnetic radiation, in such a way that the state of polarization of radiation changes in time, even in the absence of electromagnetic sources. This is a quantum effect, and is a consequence of an anomaly related to the classical invariance under electric-magnetic duality rotations in Maxwell theory.
Address [Agullo, Ivan] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-2718 ISBN Medium
Area Expedition Conference
Notes WOS:000414411900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3355
Permanent link to this record
 

 
Author Davesne, D.; Pastore, A.; Navarro, J.
Title (up) Hartree-Fock Calculations in Semi-Infinite Matter with Gogny Interactions Type Journal Article
Year 2023 Publication Universe Abbreviated Journal Universe
Volume 9 Issue 9 Pages 398 - 11pp
Keywords Nuclear Density Functional Theory; semi-infinite nuclear matter; Hartree-Fock equations; 21.60.Jz; 21.65.-f; 21.65.Mn
Abstract Hartree-Fock equations in semi-infinite nuclear matter for finite range Gogny interactions are presented together with a detailed numerical scheme to solve them. The value of the surface energy is then extracted and given for standard Gogny interactions.
Address [Davesne, Dany] Univ Lyon 1, Inst Phys Infinis Lyon 2, CNRS, IN2P3, 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France, Email: davesne@ipnl.in2p3.fr;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001074530100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5693
Permanent link to this record