toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Agullo, I.; Landete, A.; Navarro-Salas, J. url  doi
openurl 
  Title (up) Electric-magnetic duality and renormalization in curved spacetimes Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue 12 Pages 124067 - 7pp  
  Keywords  
  Abstract We point out that the duality symmetry of free electromagnetism does not hold in the quantum theory if an arbitrary classical gravitational background is present. The symmetry breaks in the process of renormalization, as also happens with conformal invariance. We show that a similar duality anomaly appears for a massless scalar field in 1 + 1 dimensions.  
  Address [Agullo, Ivan; Landete, Aitor] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000348361600012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2089  
Permanent link to this record
 

 
Author del Rio, A.; Ester, E.A. url  doi
openurl 
  Title (up) Electrically charged black hole solutions in semiclassical gravity and dynamics of linear perturbations Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 10 Pages 105022 - 23pp  
  Keywords  
  Abstract We explore quantum corrections of electrically charged black holes subject to vacuum polarization effects of fermion fields in QED. Solving this problem exactly is challenging so we restrict to perturbative corrections that one can obtain using the heat kernel expansion in the one -loop effective action for electrons. Starting from the corrections originally computed by Drummond and Hathrell, we solve the full semiclassical Einstein -Maxwell system of coupled equations to leading order in Planck 's constant and find a new electrically charged, static black hole solution. To probe these quantum corrections, we study electromagnetic and gravitational (axial) perturbations on this background and derive the coupled system of Regge-Wheeler master equations that govern the propagation of these waves. In the classical limit, our results agree with previous findings in the literature. We finally compare these results with those that one can obtain by working out the Euler-Heisenberg effective action. We find again a new electrically charged static black hole spacetime and derive the coupled system of Regge-Wheeler equations governing the propagation of axial electromagnetic and gravitational perturbations. Results are qualitatively similar in both cases. We briefly discuss some challenges found in the numerical computation of the quasinormal mode frequency spectra when quantum corrections are included.  
  Address [del Rio, Adrian] Univ Valencia, Dept Fis Teor, CSIC, Dr Moliner 50, Burjassot 46100, Valencia, Spain, Email: adrian.rio@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001239211500007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6151  
Permanent link to this record
 

 
Author Hiller Blin, A.N.; Sun, Z.F.; Vicente Vacas, M.J. url  doi
openurl 
  Title (up) Electromagnetic form factors of spin-1/2 doubly charmed baryons Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 5 Pages 054025 - 13pp  
  Keywords  
  Abstract We study the electromagnetic form factors of the doubly charmed baryons, using covariant chiral perturbation theory within the extended on-mass-shell scheme. Vector-meson contributions are also taken into account. We present results for the baryon magnetic moments, charge, and magnetic radii. While some of the chiral Lagrangian parameters could be set to values determined in previous works, the available lattice results for Xi(+)(CC) and Omega(+)(CC) only allow for robust constraints on the low-energy constant combination, c(89) (= -1/3 c(8) + 4c(9)). The couplings of the doubly charmed baryons to the vector mesons have been estimated assuming the Okubo-Zweig-Iizuka rule. We also give the expressions for the form factors of the double-beauty baryons considering the masses predicted in the framework of quark models. A comparison of our results with those obtained in heavy baryon chiral perturbation theory at the same chiral order is made.  
  Address [Blin, Astrid N. Hiller] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany, Email: hillerbl@uni-mainz.de;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000445503600008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3739  
Permanent link to this record
 

 
Author Botella, F.J.; Cornet-Gomez, F.; Nebot, M. url  doi
openurl 
  Title (up) Electron and muon g-2 anomalies in general flavor conserving two-Higgs-doublet models Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 3 Pages 035023 - 19pp  
  Keywords  
  Abstract In general two-Higgs-doublet models (2HDMs) without scalar flavor changing neutral couplings (SFCNC) in the lepton sector, the electron, muon, and tau interactions can be decoupled in a robust framework, stable under renormalization group evolution. In this framework, the breaking of lepton flavor universality (LFU) goes beyond the mass proportionality, opening the possibility to accommodate in a simple manner a different behavior among charged leptons. We analyze simultaneously the electron and muon (g – 2) anomalies in the context of these general flavor conserving models in the leptonic sector (gtlFC). We consider two different models, I-gtlFC and II-gelFC, in which the quark Yukawa couplings coincide, respectively, with the ones in type I and in type II 2HDMs. We find two types of solutions that fully reproduce both (g – 2) anomalies, and which are compatible with experimental constraints from LEP and LHC, from LFU, from flavor and electroweak physics, and with theoretical constraints in the scalar sector. In the first type of solution, all the new scalars have masses in the 1-2.5 TeV range, the vacuum expectation values (vevs) of both doublets are quite similar in magnitude, and both anomalies are dominated by two loop Barr-Zee contributions. This solution appears in both models. There is a second type of solution, where one loop contributions are dominant in the muon anomaly, all new scalars have masses below 1 TeV, and the ratio of vevs is in the range 10-100. The second neutral scalar H is the lighter among the new scalars, with a mass in the 210-390 GeV range while the pseudoscalar A is the heavier, with a mass in the range 400-900 GeV. The new charged scalar H-+/- is almost degenerate either with the scalar or with the pseudoscalar. This second type of solution only appears in the I-gelFC model. Both solutions require the soft breaking of the Z(2) symmetry of the Higgs potential.  
  Address [Botella, Francisco J.; Cornet-Gomez, Fernando] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Francisco.J.Botella@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000562002500006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4508  
Permanent link to this record
 

 
Author Pich, A.; Platschorre, A.; Reig, M. url  doi
openurl 
  Title (up) Electroweak mass difference of mesons Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 9 Pages 094044 - 6pp  
  Keywords  
  Abstract We consider electroweak gauge boson corrections to the masses of pseudoscalar mesons to next to leading order in alpha s and 1/NC. The pion mass shift induced by the Z boson is shown to be m pi +/- – m pi 0 = -0.00201(12) MeV. While being small compared to the electromagnetic mass shift, the prediction lies about a factor of similar to 4 above the precision of the current experimental measurement and a factor O(10) below the precision of current lattice calculations. This motivates future implementations of these electroweak gauge boson effects on the lattice. Finally, we consider beyond standard model contributions to the pion mass difference.  
  Address [Pich, Antonio] Univ Valencia, Dept Fis Teor, CSIC, IFIC, Parque Cient,Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: pich@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001131850700011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5907  
Permanent link to this record
 

 
Author Cata, O.; Kamenik, J.F. url  doi
openurl 
  Title (up) Electroweak precision observables at one loop in Higgsless models Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 5 Pages 053010 - 9pp  
  Keywords  
  Abstract We study the viability of generic Higgsless models at low energies when compliance with electroweak precision observables and unitarity constraints up to the TeV scale are imposed. Our analysis shows that consistency with S and T can be achieved at the one-loop level even with a single light vector state, m(V) less than or similar to 500 GeV. However, this scenario turns out to be strongly disfavored when direct resonance searches at the Tevatron are also taken into account. We show that a fully consistent picture can be obtained if an axial state is introduced. Interestingly, mV is still predicted to be light (below 1 TeV) while typical values of m(A) span over the window 1.2m(V) <= m(A) <= 1.4m(V). Our results for the vector channel are rather robust and well within the reach of present-day colliders, while the axial channel is more loosely constrained.  
  Address [Cata, Oscar] Univ Valencia, IFIC, Dept Fis Teor, CSIC, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000288389300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 545  
Permanent link to this record
 

 
Author Hirsch, M.; Staub, F.; Vicente, A. url  doi
openurl 
  Title (up) Enhancing l(i) -> 3l(j) with the Z(0)-penguin Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 11 Pages 113013 - 5pp  
  Keywords  
  Abstract Lepton flavor violation has been observed in neutrino oscillations. For charged lepton flavor violation decays only upper limits are known, but sizable branching ratios are expected in many neutrino mass models. High-scale models, such as the classical supersymmetric seesaw, usually predict that decays l(i) -> 3l(j) are roughly a factor alpha smaller than the corresponding decays l(i) -> l(j)gamma. Here we demonstrate that the Z(0)-penguin diagram can give an enhancement for decays l(i) -> 3l(j) in many extensions of the minimal supersymmetric standard model (MSSM). We first discuss why the Z(0)-penguin is not dominant in the MSSM with seesaw and show that much larger contributions from the Z(0)-penguin are expected in general. We then demonstrate the effect numerically in two example models, namely, the supersymmetric inverse seesaw and R-parity violating supersymmetry.  
  Address [Hirsch, M.] Univ Valencia Edificio Inst Paterna, CSIC, AHEP Grp, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305680800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1075  
Permanent link to this record
 

 
Author del Rio, A.; Navarro-Salas, J. url  doi
openurl 
  Title (up) Equivalence of adiabatic and DeWitt-Schwinger renormalization schemes Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 91 Issue 6 Pages 064031 - 14pp  
  Keywords  
  Abstract We prove that adiabatic regularization and DeWitt-Schwinger point-splitting provide the same result when renormalizing expectation values of the stress-energy tensor for spin-1/2 fields. This generalizes the equivalence found for scalar fields, which is here recovered in a different way. We also argue that the coincidence limit of the DeWitt-Schwinger proper time expansion of the two-point function agrees exactly with the analogous expansion defined by the adiabatic regularization method at any order (for both scalar and spin-1/2 fields). We also illustrate the power of the adiabatic method to compute higher order DeWitt coefficients in Friedmann-Lemaitre-Robertson-Walker Universes.  
  Address [del Rio, Adrian; Navarro-Salas, Jose] Univ Valencia, Dept Fis Teor, IFIC, Ctr Mixto,CSIC,Fac Fis, E-46100 Valencia, Spain, Email: adrian.rio@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000350966000005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2150  
Permanent link to this record
 

 
Author Pla, S.; Winstanley, E. url  doi
openurl 
  Title (up) Equivalence of the adiabatic expansion and Hadamard renormalization for a charged scalar field Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 107 Issue 2 Pages 025004 - 22pp  
  Keywords  
  Abstract We examine the relationship between three approaches (Hadamard, DeWitt-Schwinger, and adiabatic) to the renormalization of expectation values of field operators acting on a charged quantum scalar field. First, we demonstrate that the DeWitt-Schwinger representation of the Feynman Green's function is a particular case of the Hadamard representation. Next, we restrict attention to a spatially flat Friedmann-Lemaitre-Robertson-Walker universe with time-dependent, purely electric, background electromagnetic field, considering two-, three-, and four-dimensional space-times. Working to the order required for the renormalization of the stress-energy tensor, we find the adiabatic and DeWitt-Schwinger expansions of the Green's function when the space-time points are spatially separated. In two and four dimensions, the resulting DeWitt-Schwinger and adiabatic expansions are identical. In three dimensions, the DeWittSchwinger expansion contains terms of adiabatic order 4 that are not necessary for the renormalization of the stress-energy tensor and hence absent in the adiabatic expansion. The equivalence of the DeWittSchwinger and adiabatic approaches to renormalization in the scenario considered is thereby demonstrated in even dimensions. In odd dimensions the situation is less clear and further investigation is required in order to determine whether adiabatic renormalization is a locally covariant renormalization prescription.  
  Address [Pla, Silvia] Kings Coll London, Dept Phys, Strand Bldg,Strand Campus, London WC2R 2LS, England, Email: silvia.pla_garcia@kcl.ac.uk;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001085808200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5756  
Permanent link to this record
 

 
Author Ji, T.; Dong, X.K.; Albaladejo, M.; Du, M.L.; Guo, F.K.; Nieves, J. url  doi
openurl 
  Title (up) Establishing the heavy quark spin and light flavor molecular multiplets of the X(3872), Z(c)(3900), and X(3960) br Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 9 Pages 094002 - 13pp  
  Keywords  
  Abstract Recently, the LHCb Collaboration reported a near-threshold enhancement X(3960) in the D+sD-s invariant mass distribution. We show that the data can be well described by either a bound or a virtual state below the D+sD-s threshold. The mass given by the pole position is (3928 +/- 3) MeV. Using this mass and the existing information on the X(3872) and Zc(3900) resonances, a complete spectrum of the S-wave hadronic molecules formed by a pair of ground state charmed and anticharmed mesons is established. Thus, pole positions of the partners of the X(3872) , Zc(3900) , and the newly observed D+sD-s state are predicted. Calculations have been carried out at the leading order of nonrelativistic effective field theory and considering both heavy quark spin and light flavor SU(3) symmetries, though conservative errors from the breaking of these symmetries are provided.  
  Address [Ji, Teng; Dong, Xiang-Kun; Guo, Feng-Kun] Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China, Email: jiteng@itp.ac.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000886709000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5428  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva