toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aristizabal Sierra, D.; De Romeri, V.; Papoulias, D.K. url  doi
openurl 
  Title (up) Consequences of the Dresden-II reactor data for the weak mixing angle and new physics Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 076 - 22pp  
  Keywords Electroweak Precision Physics; Neutrino Interactions; Non-Standard Neutrino Properties; Sterile or Heavy Neutrinos  
  Abstract The Dresden-II reactor experiment has recently reported a suggestive evidence for the observation of coherent elastic neutrino-nucleus scattering, using a germanium detector. Given the low recoil energy threshold, these data are particularly interesting for a low-energy determination of the weak mixing angle and for the study of new physics leading to spectral distortions at low momentum transfer. Using two hypotheses for the quenching factor, we study the impact of the data on: (i) The weak mixing angle at a renormalization scale of similar to 10 MeV, (ii) neutrino generalized interactions with light mediators, (iii) the sterile neutrino dipole portal. The results for the weak mixing angle show a strong dependence on the quenching factor choice. Although still with large uncertainties, the Dresden-II data provide for the first time a determination of sin(2)theta(W) at such scale using coherent elastic neutrino-nucleus scattering data. Tight upper limits are placed on the light vector, scalar and tensor mediator scenarios. Kinematic constraints implied by the reactor anti-neutrino flux and the ionization energy threshold allow the sterile neutrino dipole portal to produce up-scattering events with sterile neutrino masses up to similar to 8 MeV. In this context, we find that limits are also sensitive to the quenching factor choice, but in both cases competitive with those derived from XENON1T data and more stringent that those derived with COHERENT data, in the same sterile neutrino mass range.  
  Address [Aristizabal Sierra, D.] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110-V,Avda Espana 1680, Valparaiso, Chile, Email: daristizabal@ulgac.be;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000853339300012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5360  
Permanent link to this record
 

 
Author Debastiani, V.R.; Sakai, S.; Oset, E. url  doi
openurl 
  Title (up) Considerations on the Schmid theorem for triangle singularities Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue 1 Pages 69 - 13pp  
  Keywords  
  Abstract We investigate the Schmid theorem, which states that if one has a tree level mechanism with a particle decaying to two particles and one of them decaying posteriorly to two other particles, the possible triangle singularity developed by the mechanism of elastic rescattering of two of the three decay particles does not change the cross section provided by the tree level. We investigate the process in terms of the width of the unstable particle produced in the first decay and determine the limits of validity and violation of the theorem. One of the conclusions is that the theorem holds in the strict limit of zero width of that resonance, in which case the strength of the triangle diagram becomes negligible compared to the tree level. Another conclusion, on the practical side, is that for realistic values of the width, the triangle singularity can provide a strength comparable or even bigger than the tree level, which indicates that invoking the Schmid theorem to neglect the triangle diagram stemming from elastic rescattering of the tree level should not be done. Even then, we observe that the realistic case keeps some memory of the Schmid theorem, which is visible in a peculiar interference pattern with the tree level.  
  Address [Debastiani, V. R.; Sakai, S.; Oset, E.] Ctr Mixto Univ Valencia, CSIC, Inst Invest Paterna, Dept Fis Teor, Aptdo 22085, Valencia 46071, Spain, Email: vinicius.rodrigues@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000456999600008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3904  
Permanent link to this record
 

 
Author Mandal, S.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title (up) Consistency of the dynamical high-scale type-I seesaw mechanism Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 11 Pages 115030 - 15pp  
  Keywords  
  Abstract We analyze the consistency of electroweak breaking within the simplest high-scale SU(3)(c) circle times SU(2)(L) circle times U(1)(Y) type-I seesaw mechanism. We derive the full two-loop renormalization group equations of the relevant parameters, including the quartic Higgs self-coupling of the Standard Model. For the simplest case of bare “right-handed” neutrino mass terms we find that, with large Yukawa couplings, the Higgs quartic self-coupling becomes negative much below the seesaw scale, so that the model may be inconsistent even as an effective theory. We show, however, that the “dynamical” type-I high-scale seesaw with spontaneous lepton number violation has better stability properties.  
  Address [Mandal, Sanjoy; Valle, Jose W. F.] Univ Valencia, CSIC, AHEP Grp, Inst Fis Corpuscular, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: smandal@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000541704500012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4440  
Permanent link to this record
 

 
Author Ikeno, N.; Toledo, G.; Liang, W.H.; Oset, E. doi  openurl
  Title (up) Consistency of the Molecular Picture of Omega(2012) with the Latest Belle Results Type Journal Article
  Year 2023 Publication Few-Body Systems Abbreviated Journal Few-Body Syst.  
  Volume 64 Issue 3 Pages 55 - 6pp  
  Keywords  
  Abstract We report the results of the research on the Omega(2012) state based on themolecular picture and discuss the consistency of the picture with the Belle experimental results. We study the interaction of the (K) over bar Xi*, eta Omega(s-wave) and (K) over bar Xi(d-wave) channels within a coupled channel unitary approach, and obtain the mass and the width of the Omega(2012) state and the decay ratio R-Xi(K) over bar(Xi pi(K) over bar). We also present a mechanism for Omega c -> pi(+)Omega(2012) production through an external emission Cabibbo favoredweak decay mode, where the Omega(2012) is dynamically generated from the above interaction. We find that the results obtained by the molecular picture are consistent with all Belle experimental data.  
  Address [Ikeno, Natsumi] Tottori Univ, Dept Agr Life & Environm Sci, Tottori 6808551, Japan, Email: ikeno@tottori-u.ac.jp  
  Corporate Author Thesis  
  Publisher Springer Wien Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177-7963 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001022421000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5586  
Permanent link to this record
 

 
Author Falkowski, A.; Gonzalez-Alonso, M.; Tabrizi, Z. url  doi
openurl 
  Title (up) Consistent QFT description of non-standard neutrino interactions Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 048 - 23pp  
  Keywords Effective Field Theories; Neutrino Physics  
  Abstract Neutrino oscillations are precision probes of new physics. Apart from neutrino masses and mixings, they are also sensitive to possible deviations of low-energy interactions between quarks and leptons from the Standard Model predictions. In this paper we develop a systematic description of such non-standard interactions (NSI) in oscillation experiments within the quantum field theory framework. We calculate the event rate and oscillation probability in the presence of general NSI, starting from the effective field theory (EFT) in which new physics modifies the flavor or Lorentz structure of charged-current interactions between leptons and quarks. We also provide the matching between the EFT Wilson coefficients and the widely used simplified quantum-mechanical approach, where new physics is encoded in a set of production and detection NSI parameters. Finally, we discuss the consistency conditions for the standard NSI approach to correctly reproduce the quantum field theory result.  
  Address [Falkowski, Adam] Univ Paris Saclay, CNRS IN2P3, IJCLab, F-91405 Orsay, France, Email: adam.falkowski@th.u-psud.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000593911400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4623  
Permanent link to this record
 

 
Author Desai, N.; Domingo, F.; Kim, J.S.; Ruiz de Austri, R.; Rolbiecki, K.; Sonawane, M.; Wang, Z.S. url  doi
openurl 
  Title (up) Constraining electroweak and strongly charged long-lived particles with CheckMATE Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 11 Pages 968 - 19pp  
  Keywords  
  Abstract Long-lived particles have become a new frontier in the exploration of physics beyond the Standard Model. In this paper, we present the implementation of four types of long-lived particle searches, viz. displaced leptons, disappearing track, displaced vertex with either muons or with missing transverse energy, and heavy charged tracks. These four categories cover the signatures of a large range of physics models. We illustrate their potential for exclusion and discuss their mutual overlaps in mass-lifetime space for two simple phenomenological models involving either a U(1)-charged or a coloured scalar.  
  Address [Desai, Nishita] Tata Inst Fundamental Res, Dept Theoret Phys, Mumbai 400005, Maharashtra, India, Email: nishita.desai@tifr.res.in;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000714374500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5015  
Permanent link to this record
 

 
Author Mongillo, M.; Abdullahi, A.; Banto Oberhauser, B.; Crivelli, P.; Hostert, M.; Massaro, D.; Molina Bueno, L.; Pascoli, S. url  doi
openurl 
  Title (up) Constraining light thermal inelastic dark matter with NA64 Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 5 Pages 391 - 14pp  
  Keywords  
  Abstract A vector portal between the Standard Model and the dark sector is a predictive and compelling framework for thermal dark matter. Through co-annihilations, models of inelastic dark matter (iDM) and inelastic Dirac dark matter (i2DM) can reproduce the observed relic density in the MeV to GeV mass range without violating cosmological limits. In these scenarios, the vector mediator behaves like a semi-visible particle, evading traditional bounds on visible or invisible resonances, and uncovering new parameter space to explain the muon (g – 2) anomaly. By means of a more inclusive signal definition at the NA64 experiment, we place new constraints on iDM and i2DM using a missing energy technique. With a recast-based analysis, we contextualize the NA64 exclusion limits in parameter space and estimate the reach of the newly collected and expected future NA64 data. Our results motivate the development of an optimized search program for semi-visible particles, in which fixed target experiments like NA64 provide a powerful probe in the sub-GeV mass range.  
  Address [Mongillo, Martina; Oberhauser, Benjamin Banto; Crivelli, Paolo] Swiss Fed Inst Technol, Inst Particle Phys & Astrophys, CH-8093 Zurich, Switzerland, Email: mmongillo@phys.ethz.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000986592700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5548  
Permanent link to this record
 

 
Author Lopez-Ibañez, M.L.; Melis, A.; Jay Perez, M.; Rahat, M.H.; Vives, O. url  doi
openurl 
  Title (up) Constraining low-scale flavor models with (g-2)(mu) and lepton flavor violation Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 3 Pages 035021 - 21pp  
  Keywords  
  Abstract We present here two concrete examples of models where a sub-TeV scale breaking of their respective T-13 and A(5) flavor symmetries is able to account for the recently observed discrepancy in the muon anomalous magnetic moment, (g – 2)(mu). Similarities in the flavor structures of the charged-lepton Yukawa matrix and dipole matrix yielding (g – 2)(mu) give rise to strong constraints on low-scale flavor models when bounds from lepton flavor violation (LFV) are imposed. These constraints place stringent limits on the off- diagonal Yukawa structure, suggesting a mostly (quasi)diagonal texture for models with a low flavor breaking scale A(f). We argue that many of the popular flavor models in the literature designed to explain the fermion masses and mixings are not suitable for reproducing the observed discrepancy in (g – 2)(mu), which requires a delicate balance of maintaining a low flavor scale while simultaneously satisfying strong LFV constraints.  
  Address [Lopez-Ibanez, M. L.] Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China, Email: maloi2@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000767363800008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5167  
Permanent link to this record
 

 
Author Coloma, P.; Gonzalez-Garcia, M.C.; Maltoni, M.; Pinheiro, J.P.; Urrea, S. url  doi
openurl 
  Title (up) Constraining new physics with Borexino Phase-II spectral data Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 138 - 35pp  
  Keywords Neutrino Interactions; Non-Standard Neutrino Properties  
  Abstract We present a detailed analysis of the spectral data of Borexino Phase II, with the aim of exploiting its full potential to constrain scenarios beyond the Standard Model. In particular, we quantify the constraints imposed on neutrino magnetic moments, neutrino non-standard interactions, and several simplified models with light scalar, pseudoscalar or vector mediators. Our analysis shows perfect agreement with those performed by the collaboration on neutrino magnetic moments and neutrino non-standard interactions in the same restricted cases and expands beyond those, stressing the interplay between flavour oscillations and flavour non-diagonal interaction effects for the correct evaluation of the event rates. For simplified models with light mediators we show the power of the spectral data to obtain robust limits beyond those previously estimated in the literature.  
  Address [Coloma, Pilar; Maltoni, Michele] CSIC UAM, Inst Fis Teor IFT CFTMAT, Calle Nicolas Cabrera 1315,Campus Cantoblanco, E-28049 Madrid, Spain, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000829963100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5307  
Permanent link to this record
 

 
Author Chatterjee, S.S.; Lavignac, S.; Miranda, O.G.; Sanchez Garcia, G. url  doi
openurl 
  Title (up) Constraining nonstandard interactions with coherent elastic neutrino-nucleus scattering at the European Spallation Source Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 107 Issue 5 Pages 055019 - 17pp  
  Keywords  
  Abstract The European Spallation Source (ESS), currently under construction in Sweden, will provide an intense pulsed neutrino flux allowing for high-statistics measurements of coherent elastic neutrino-nucleus scattering (CEvNS) with advanced nuclear recoil detectors. In this paper, we investigate in detail the possibility of constraining nonstandard neutrino interactions (NSIs) through such precision CEvNS measurements at the ESS, considering the different proposed detection technologies, either alone or in combination. We first study the sensitivity to neutral-current NSI parameters that each detector can reach in 3 years of data taking. We then show that operating two detectors simultaneously can significantly improve the expected sensitivity on flavor-diagonal NSI parameters. Combining the results of two detectors turns out to be even more useful when two NSI parameters are assumed to be nonvanishing at a time. In this case, suitably chosen detector combinations can reduce the degeneracies between some pairs of NSI parameters to a small region of the parameter space.  
  Address [Chatterjee, Sabya Sachi; Lavignac, Stephane] Univ Paris Saclay, Inst Phys Theor, CNRS, CEA, F-91191 Gif Sur Yvette, France, Email: sabya-sachi.chatterjee@ipht.fr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000957642400014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5507  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva