|   | 
Details
   web
Records
Author Albaladejo, M.; Nieves, J.
Title (up) Compositeness of S-wave weakly-bound states from next-to-leading order Weinberg's relations Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 8 Pages 724 - 12pp
Keywords
Abstract We discuss a model-independent estimator of the likelihood of the compositeness of a shallow S-wave bound or virtual state. The approach is based on an extension of Weinberg's relations in Weinberg (Phys Rev 137:B672, 1965) and it relies only on the proximity of the energy of the state to the two-hadron threshold to which it significantly couples. The scheme only makes use of the experimental scattering length and the effective range low energy parameters, and it is shown to be fully consistent for predominantly molecular hadrons. As explicit applications, we analyse the case of the deuteron, the S-1(0) nucleon virtual state and the exotic D-so(*)(2317)(+/-) , and find strong support to the molecular interpretation in all cases. Results are less conclusive for the D* (s0)(2317)+/-, since the binding energy of this state would be significantly higher than that of the deuteron, and the approach employed here is at the limit of its applicability. We also qualitatively address the case of the recently discovered T + cc state, within the isospin limit to avoid the complexity of the very close thresholds (DD)-D-0*+ and D + D*(0), which could mask the ingredients of the approach proposed in this work.
Address [Albaladejo, M.; Nieves, J.] Inst Invest Paterna, Inst Fis Corpuscular, Ctr Mixto CSIC UV, C Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: Miguel.Albaladejo@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000842040900001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5337
Permanent link to this record
 

 
Author Falkowski, A.; Gonzalez-Alonso, M.; Naviliat-Cuncic, O.
Title (up) Comprehensive analysis of beta decays within and beyond the Standard Model Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 126 - 36pp
Keywords Effective Field Theories; Beyond Standard Model; Quark Masses and SM Parameters
Abstract Precision measurements in allowed nuclear beta decays and neutron decay are reviewed and analyzed both within the Standard Model and looking for new physics. The analysis incorporates the most recent experimental and theoretical developments. The results are interpreted in terms of Wilson coefficients describing the effective interactions between leptons and nucleons (or quarks) that are responsible for beta decay. New global fits are performed incorporating a comprehensive list of precision measurements in neutron decay, superallowed 0(+)-> 0(+) transitions, and other nuclear decays that include, for the first time, data from mirror beta transitions. The results confirm the V-A character of the interaction and translate into updated values for V-ud and g(A) at the 10(-4) level. We also place new stringent limits on exotic couplings involving left-handed and right-handed neutrinos, which benefit significantly from the inclusion of mirror decays in the analysis.
Address [Falkowski, Adam] Univ Paris Saclay, CNRS, IN2P3, IJCLab, F-91405 Orsay, France, Email: adam.falkowski@ijclab.in2p3.fr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000640519700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4804
Permanent link to this record
 

 
Author Stadler, J.; Boehm, C.; Mena, O.
Title (up) Comprehensive study of neutrino-dark matter mixed damping Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 014 - 23pp
Keywords CMBR theory; cosmological perturbation theory; neutrino properties; power spectrum
Abstract Mixed damping is a physical effect that occurs when a heavy species is coupled to a relativistic fluid which is itself free streaming. As a cross-case between collisional damping and free-streaming, it is crucial in the context of neutrino-dark matter interactions. In this work, we establish the parameter space relevant for mixed damping, and we derive an analytical approximation for the evolution of dark matter perturbations in the mixed damping regime to illustrate the physical processes responsible for the suppression of cosmological perturbations. Although extended Boltzmann codes implementing neutrino-dark matter scattering terms automatically include mixed damping, this effect has not been systematically studied. In order to obtain reliable numerical results, it is mandatory to reconsider several aspects of neutrino-dark matter interactions, such as the initial conditions, the ultra-relativistic fluid approximation and high order multiple moments in the neutrino distribution. Such a precise treatment ensures the correct assessment of the relevance of mixed damping in neutrino-dark matter interactions.
Address [Stadler, Julia] Univ Durham, Inst Particle Phys Phenomenol, South Rd, Durham DH1 3LE, England, Email: julia.j.stadler@durham.ac.uk;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000481534700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4111
Permanent link to this record
 

 
Author Aebischer, J. et al; Vicente, A.
Title (up) Computing tools for effective field theories Type Journal Article
Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 84 Issue 2 Pages 170 - 59pp
Keywords
Abstract In recent years, theoretical and phenomenological studies with effective field theories have become a trending and prolific line of research in the field of high-energy physics. In order to discuss present and future prospects concerning automated tools in this field, the SMEFT-Tools 2022 workshop was held at the University of Zurich from 14th-16th September 2022. The current document collects and summarizes the content of this workshop.
Address [Aebischer, Jason; Allwicher, Lukas; Stoffer, Peter] Univ Zurich, Phys Inst, CH-8057 Zurich, Switzerland, Email: matteo.fael@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001189739500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6052
Permanent link to this record
 

 
Author AGATA Collaboration (Valiente-Dobon, J.J. et al); Perez-Vidal, R.M.; Blasco Miquel, J.; Civera, J.V.; Gadea, A.
Title (up) Conceptual design of the AGATA 2 pi array at LNL Type Journal Article
Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1049 Issue Pages 168040 - 14pp
Keywords AGATA spectrometer; LNL facility; gamma-ray tracking; Pulse shape analysis; PRISMA spectrometer; EUCLIDES detector; DANTE detector; TRACE detector; Plunger device
Abstract The Advanced GAmma Tracking Array (AGATA) has been installed at Laboratori Nazionali di Legnaro (LNL), Italy. In this installation, AGATA will consist, at the beginning, of 13 AGATA triple clusters (ATCs) with an angular coverage of 1n,and progressively the number of ATCs will increase up to a 2 pi angular coverage. This setup will exploit both stable and radioactive ion beams delivered by the Tandem-PIAVE-ALPI accelerator complex and the SPES facility. The new implementation of AGATA at LNL will be used in two different configurations, firstly one coupled to the PRISMA large-acceptance magnetic spectrometer and lately a second one at Zero Degrees, along the beam line. These two configurations will allow us to cover a broad physics program, using different reaction mechanisms, such as Coulomb excitation, fusion-evaporation, transfer and fission at energies close to the Coulomb barrier. These setups have been designed to be coupled with a large variety of complementary detectors such as charged particle detectors, neutron detectors, heavy-ion detectors, high-energy gamma-ray arrays, cryogenic and gasjet targets and the plunger device for lifetime measurements. We present in this paper the conceptual design, characteristics and performance figures of this implementation of AGATA at LNL.
Address [Valiente-Dobon, J. J.; Goasduff, A.; Angelini, F.; Balogh, M.; Brugnara, D.; Cocconi, P.; Cogo, A.; Collado, J.; Ertoprak, A.; Galtarossa, F.; Gambalonga, A.; Gongora Servin, B.; Gottardo, A.; Gozzelino, A.; Gulmini, M.; Marchi, T.; Modanese, P.; Napoli, D. R.; Pellumaj, J.; Perez-Vidal, R. M.; Pilotto, E.; Raniero, W.; Rosso, D.; Scarpa, D.; Sedlak, M.; Toniolo, N.; Volpe, V.; Zago, L.; Zanon, I.; Allegrini, M. L.; Benini, D.; Biasotto, M.; Corradi, L.; De Angelis, G.; De Ruvo, L.; Fantinel, S.; Fioretto, E.; Minarello, A.; Stefanini, A. M.] INFN, Lab Nazl Legnaro, Legnaro, Italy, Email: valiente@lnl.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001020811800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5590
Permanent link to this record