toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sun, Z.F.; Bayar, M.; Fernandez-Soler, P.; Oset, E. url  doi
openurl 
  Title (up) Ds0*(2317)(+) in the decay of Bc into J/Psi DK Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 5 Pages 054028 - 9pp  
  Keywords  
  Abstract In this paper we study the relationship between the D-s0*(2317)(+) resonance and the decay of the B-c meson into J/Psi DK. In this process, the B-c meson decays first into J/Psi and the quark pair c (s) over bar, and then the quark pair hadronizes into DK or D-s eta components, which undergo final state interaction. This final state interaction, generating the D-s0*(2317)(+) resonance, is described by the chiral unitary approach. With the parameters which allow us to match the pole position of the D-s0*(2317)(+), we obtain the DK invariant mass distribution of the decay B-c -> J/Psi DK, and also the rate for B-c -> J/Psi D-s0*(2317). The ratio of these two magnitudes is then predicted.  
  Address [Sun, Zhi-Feng; Fernandez-Soler, P.; Oset, E.] Univ Valencia, CSIC, Dept Fis Teor, Inst Invest Paterna,Ctr Mixto, Apartado 22085, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000372417900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2583  
Permanent link to this record
 

 
Author SciBooNE and MiniBooNE collaborations (Cheng, G. et al); Catala-Perez, J.; Gomez-Cadenas, J.J.; Sorel, M. url  doi
openurl 
  Title (up) Dual baseline search for muon antineutrino disappearance at 0.1 eV(2) < Delta m(2) < 100 eV(2) Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 86 Issue 5 Pages 052009 - 14pp  
  Keywords  
  Abstract The MiniBooNE and SciBooNE collaborations report the results of a joint search for short baseline disappearance of (nu) over bar (mu) at Fermilab's Booster Neutrino Beamline. The MiniBooNE Cherenkov detector and the SciBooNE tracking detector observe antineutrinos from the same beam, therefore the combined analysis of their data sets serves to partially constrain some of the flux and cross section uncertainties. Uncertainties in the nu(mu) background were constrained by neutrino flux and cross section measurements performed in both detectors. A likelihood ratio method was used to set a 90% confidence level upper limit on (nu) over bar (mu) disappearance that dramatically improves upon prior limits in the Delta m(2) = 0.1-100 eV(2) region.  
  Address [Cheng, G.; Franke, A. J.; Karagiorgi, G.; Mahn, K. B. M.; Mariani, C.; Shaevitz, M. H.] Columbia Univ, New York, NY 10027 USA, Email: gcc2113@columbia.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000309189000002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1172  
Permanent link to this record
 

 
Author SciBooNE and MiniBooNE collaborations (Mahn, K.B.M. et al); Catala-Perez, J.; Gomez-Cadenas, J.J.; Sorel, M. url  doi
openurl 
  Title (up) Dual baseline search for muon neutrino disappearance at 0.5 eV(2) < Delta m(2) < 40 eV(2) Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 3 Pages 032007 - 10pp  
  Keywords  
  Abstract The SciBooNE and MiniBooNE collaborations report the results of a nu(mu) disappearance search in the Delta m(2) region of 0.5-40 eV(2). The neutrino rate as measured by the SciBooNE tracking detectors is used to constrain the rate at the MiniBooNE Cherenkov detector in the first joint analysis of data from both collaborations. Two separate analyses of the combined data samples set 90% confidence level (CL) limits on nu(mu) disappearance in the 0.5-40 eV(2) Delta m(2) region, with an improvement over previous experimental constraints between 10 and 30 eV(2).  
  Address [Dharmapalan, R.; Liu, Y.; Perevalov, D.; Stancu, I.] Univ Alabama, Tuscaloosa, AL 35487 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000300663800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 913  
Permanent link to this record
 

 
Author De Romeri, V.; Kelly, K.J.; Machado, P.A.N. url  doi
openurl 
  Title (up) DUNE-PRISM sensitivity to light dark matter Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 9 Pages 095010 - 13pp  
  Keywords  
  Abstract We explore the sensitivity of the Deep Underground Neutrino Experiment (DUNE) near detector and the proposed DUNE-PRISM movable near detector to sub-GeV dark matter, specifically scalar dark matter coupled to the standard model via a sub-GeV dark photon. We consider dark matter produced in the DUNE target that travels to the detector and scatters off electrons. By combining searches for dark matter at many off-axis positions with DUNE-PRISM, sensitivity to this scenario can be much stronger than when performing a measurement at one on-axis position.  
  Address [De Romeri, Valentina] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Calle Catedratico Jose Beltran 2, E-46980 Paterna, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000495456600006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4197  
Permanent link to this record
 

 
Author Yang, W.Q.; Di Valentino, E.; Mena, O.; Pan, S. url  doi
openurl 
  Title (up) Dynamical dark sectors and neutrino masses and abundances Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 2 Pages 023535 - 17pp  
  Keywords  
  Abstract We investigate generalized interacting dark matter-dark energy scenarios with a time-dependent coupling parameter, allowing also for freedom in the neutrino sector. The models are tested in the phantom and quintessence regimes, characterized by equations of state, w(x) < -1 and w(x) > -1, respectively. Our analyses show that for some of the scenarios, the existing tensions on the Hubble constant H-0 and on the clustering parameter S-8 can be significantly alleviated. The relief is either due to (a) a dark energy component which lies within the phantom region or (b) the presence of a dynamical coupling in quintessence scenarios. The inclusion of massive neutrinos into the interaction schemes does not affect either the constraints on the cosmological parameters or the bounds on the total number or relativistic degrees of freedom N-eff, which are found to be extremely robust and, in general, strongly consistent with the canonical prediction N-eff = 3.045. The most stringent bound on the total neutrino mass M-nu is M-nu, < 0.116 eV and it is obtained within a quintessence scenario in which the matter mass-energy density is only mildly affected by the presence of a dynamical dark sector coupling.  
  Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000550997900008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4472  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva