toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title (up) A search for Xi(++)(cc) -> D(+)pK(-)pi(+) decays Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 124 - 21pp  
  Keywords Branching fraction; Charm physics; Hadron-Hadron scattering (experiments)  
  Abstract A search for the Xi(++)(cc) baryon through the Xi(++)(cc) -> D(+)pK(-)pi(+) decay is performed with a data sample corresponding to an integrated luminosity of 1.7 fb(-1) recorded by the LHCb experiment in pp collisions at a centre-of-mass energy of 13 TeV. No significant signal is observed in the mass range from the kinematic threshold of the decay to 3800 MeV/c(2). An upper limit is set on the ratio of branching fractions R = B(Xi(++)(cc) -> D(+)pK(-)pi(+))/B(Xi(++)(cc) -> A(c)(+) K- pi(+)pi(+)) with R < 1.7 (2.1) x 10(-2) at the 90% (95%) confidence level at the known mass of the Xi(++)(cc) state.  
  Address [Bediaga, I.; Cruz Torres, M.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; dos Reis, A. C.; Soares Lavra, l.; Jadallah Aoude, R. Tourinho] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: alberto.correa.dos.reis@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000509341600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4290  
Permanent link to this record
 

 
Author Hooper, D.; Leane, R.K.; Tsai, Y.D.; Wegsman, S.; Witte, S.J. url  doi
openurl 
  Title (up) A systematic study of hidden sector dark matter: application to the gamma-ray and antiproton excesses Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 163 - 38pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM  
  Abstract In hidden sector models, dark matter does not directly couple to the particle content of the Standard Model, strongly suppressing rates at direct detection experiments, while still allowing for large signals from annihilation. In this paper, we conduct an extensive study of hidden sector dark matter, covering a wide range of dark matter spins, mediator spins, interaction diagrams, and annihilation final states, in each case determining whether the annihilations are s-wave (thus enabling efficient annihilation in the universe today). We then go on to consider a variety of portal interactions that allow the hidden sector annihilation products to decay into the Standard Model. We broadly classify constraints from relic density requirements and dwarf spheroidal galaxy observations. In the scenario that the hidden sector was in equilibrium with the Standard Model in the early universe, we place a lower bound on the portal coupling, as well as on the dark matter's elastic scattering cross section with nuclei. We apply our hidden sector results to the observed Galactic Center gamma-ray excess and the cosmic-ray antiproton excess. We find that both of these excesses can be simultaneously explained by a variety of hidden sector models, without any tension with constraints from observations of dwarf spheroidal galaxies.  
  Address [Hooper, Dan; Tsai, Yu-Dai] Fermilab Natl Accelerator Lab, Fermilab, Batavia, IL 60510 USA, Email: dhooper@fnal.gov;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000555828300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4491  
Permanent link to this record
 

 
Author Bierenbaum, I.; Catani, S.; Draggiotis, P.; Rodrigo, G. url  doi
openurl 
  Title (up) A tree-loop duality relation at two loops and beyond Type Journal Article
  Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 073 - 22pp  
  Keywords NLO Computations; QCD  
  Abstract The duality relation between one-loop integrals and phase-space integrals, developed in a previous work, is extended to higher-order loops. The duality relation is realized by a modification of the customary +i0 prescription of the Feynman propagators, which compensates for the absence of the multiple-cut contributions that appear in the Feynman tree theorem. We rederive the duality theorem at one-loop order in a form that is more suitable for its iterative extension to higher-loop orders. We explicitly show its application to two-and three-loop scalar master integrals, and we discuss the structure of the occurring cuts and the ensuing results in detail.  
  Address [Bierenbaum, Isabella; Draggiotis, Petros; Rodrigo, German] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: isabella.bierenbaum@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284147000016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 326  
Permanent link to this record
 

 
Author Breso-Pla, V.; Falkowski, A.; Gonzalez-Alonso, M. url  doi
openurl 
  Title (up) A(FB) in the SMEFT: precision Z physics at the LHC Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 021 - 27pp  
  Keywords Beyond Standard Model; Effective Field Theories  
  Abstract We study the forward-backward asymmetry A(FB) in pp -> l(+)l(-) at the Z peak within the Standard Model Effective Field Theory (SMEFT). We find that this observable provides per mille level constraints on the vertex corrections of the Z boson to quarks, which close a flat direction in the electroweak precision SMEFT fit. Moreover, we show that current A(FB) data is precise enough so that its inclusion in the fit improves significantly LEP bounds even in simple New Physics setups. This demonstrates that the LHC can compete with and complement LEP when it comes to precision measurements of the Z boson properties.  
  Address [Breso-Pla, Victor; Gonzalez-Alonso, Martin] Univ Valencia, Dept Fis Teor, IFIC, CSIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: vicbreso@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000683833600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4935  
Permanent link to this record
 

 
Author Centelles Chulia, S.; Cepedello, R.; Medina, O. url  doi
openurl 
  Title (up) Absolute neutrino mass scale and dark matter stability from flavour symmetry Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 080 - 23pp  
  Keywords Discrete Symmetries; Flavour Symmetries; Neutrino Mixing; Particle Nature of Dark Matter  
  Abstract We explore a simple but extremely predictive extension of the scotogenic model. We promote the scotogenic symmetry Z(2) to the flavour non-Abelian symmetry sigma(81), which can also automatically protect dark matter stability. In addition, sigma(81) leads to striking predictions in the lepton sector: only Inverted Ordering is realised, the absolute neutrino mass scale is predicted to be m(lightest)approximate to 7.5x10(-4) eV and the Majorana phases are correlated in such a way that vertical bar m(ee)vertical bar approximate to 0.018 eV. The model also leads to a strong correlation between the solar mixing angle theta(12) and delta(CP), which may be falsified by the next generation of neutrino oscillation experiments. The setup is minimal in the sense that no additional symmetries or flavons are required.  
  Address [Chulia, Salvador Centelles] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: chulia@mpi-hd.mpg.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000867661300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5387  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva