|   | 
Details
   web
Records
Author Gonzalez, P.
Title (down) A quark model study of strong decays of X(3915) Type Journal Article
Year 2017 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 44 Issue 7 Pages 075004 - 13pp
Keywords quark; meson; potential
Abstract Strong decays of X(3915) are analyzed from two quark model descriptions of X(3915), a conventional one in terms of the Cornell potential and an unconventional one from a generalized screened potential. We conclude that the experimental suppression of the OZI allowed decay X(3915) -> D (D) over bar might be explained in both cases due to the momentum dependence of the decay amplitude. However, the experimental significance of the OZI forbidden decay X(3915) -> omega J/psi could favor an unconventional description.
Address [Gonzalez, P.] Univ Valencia, Dept Fis Teor, CSIC, IFIC, E-46100 Valencia, Spain, Email: pedro.gonzalez@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000402890800001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3158
Permanent link to this record
 

 
Author Bruschini, R.; Gonzalez, R.
Title (down) A plausible explanation of Upsilon(10860) Type Journal Article
Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 791 Issue Pages 409-413
Keywords Quark; Meson; Potential
Abstract We show that a good description of the Upsilon(10860) properties, in particular the mass, the e(+) e(-) leptonic widths and the pi(+) pi(-) Upsilon(ns) (n = 1, 2, 3) production rates, can be obtained under the assumption that Upsilon(10860) is a mixing of the conventional Upsilon(5s) quark model state with the lowest P-wave hybrid state.
Address [Bruschini, R.; Gonzalez, R.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, Carrer Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: roberto.bruschini@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000462321800059 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3959
Permanent link to this record
 

 
Author Dote, A.; Bayar, M.; Xiao, C.W.; Hyodo, T.; Oka, M.; Oset, E.
Title (down) A narrow quasi-bound state of the DNN system Type Journal Article
Year 2013 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A
Volume 914 Issue Pages 499-504
Keywords Nuclear system with a D meson; Few-body system; Variational calculation; Faddeev calculation
Abstract We have investigated a charmed system of DNN (composed of two nucleons and a D meson) by a complementary study with a variational calculation and a Faddeev calculation with fixed-center approximation (Faddeev-FCA). In the present study, we employ a DN potential based on a vector-meson exchange picture in which a resonant A(c)(2595) is dynamically generated as a DN quasi-bound state, similarly to the A(1405) as a (K) over barN one in the strange sector. As a result of the study of variational calculation with an effective DN potential and three kinds of NN potentials, the DNN(J(pi) =0(-), I = 1/2) is found to be a narrow quasi-bound state below A(c)(2595)N threshold: total binding energy similar to 225 MeV and mesonic decay width similar to 25 MeV. On the other hand, the J(pi) =1(-) state is considered to be a scattering state of A(c)(2595) and a nucleon. These results are essentially supported by the Faddeev-FCA calculation. By the analysis of the variational wave function, we have found a unique structure in the DNN(J(pi) = 0, I = 1/2) such that the D meson stays around the center of the total system due to the heaviness of the D meson.
Address [Dote, A.] High Energy Accelerator Res Org KEK, IPNS, KEK Theory Ctr, Tsukuba, Ibaraki 3050801, Japan, Email: dote@post.kek.jp
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9474 ISBN Medium
Area Expedition Conference
Notes WOS:000324847700071 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1602
Permanent link to this record