|   | 
Details
   web
Records
Author Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S.
Title (up) Nonminimal dark sector physics and cosmological tensions Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 6 Pages 063502 - 20pp
Keywords
Abstract We explore whether nonstandard dark sector physics might be required to solve the existing cosmological tensions. The properties we consider in combination are (a) an interaction between the dark matter and dark energy components and (b) a dark energy equation of state w different from that of the canonical cosmological constant w = -1. In principle, these two parameters are independent. In practice, to avoid early-time, superhorizon instabilities, their allowed parameter spaces are correlated. Moreover, a clear degeneracy exists between these two parameters in the case of cosmic microwave background (CMB) data. We analyze three classes of extended interacting dark energy models in light of the 2019 Planck CMB results and Cepheid-calibrated local distance ladder H-0 measurements of Riess et al. (R19), as well as recent baryon acoustic oscillation (BAO) and type Ia supernovae (SNeIa) distance data. We find that in quintessence coupled dark energy models, where w > -1, the evidence for a nonzero coupling between the two dark sectors can surpass the 5 sigma significance. Moreover, for both Planck + BAO or Planck + SNeIa, we find a preference for w > -1 at about three standard deviations. Quintessence models are, therefore, in excellent agreement with current data when an interaction is considered. On the other hand, in phantom coupled dark energy models, there is no such preference for a nonzero dark sector coupling. All the models we consider significantly raise the value of the Hubble constant, easing the H-0 tension. In the interacting scenario, the disagreement between Planck thorn BAO and R19 is considerably reduced from 4.3 sigma in the case of the Lambda cold dark matter (Lambda CDM) model to about 2.5 sigma. The addition of low-redshift BAO and SNeIa measurements leaves, therefore, some residual tension with R19 but at a level that could be justified by a statistical fluctuation. Bayesian evidence considerations mildly disfavor both the coupled quintessence and phantom models, while mildly favoring a coupled vacuum scenario, even when late-time datasets are considered. We conclude that nonminimal dark energy cosmologies, such as coupled quintessence, phantom, or vacuum models, are still an interesting route toward softening existing cosmological tensions, even when low-redshift datasets and Bayesian evidence considerations are taken into account.
Address [Di Valentino, Eleonora] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England, Email: eleonora.divalentino@manchester.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000517964500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4309
Permanent link to this record
 

 
Author Di Valentino, E.; Gariazzo, S.; Giare, W.; Melchiorri, A.; Mena, O.; Renzi, F.
Title (up) Novel model-marginalized cosmological bound on the QCD axion mass Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 10 Pages 103528 - 16pp
Keywords
Abstract We present model-marginalized limits on mixed hot dark matter scenarios, which consider both thermal neutrinos and thermal QCD axions. A novel aspect of our analyses is the inclusion of small-scale cosmic microwave background (CMB) observations from the Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT), together with those from the Planck satellite and baryon acoustic oscillation (BAO) data. After marginalizing over a number of well-motivated nonminimal background cosmologies, the tightest 95% Confidential Level (CL) upper bound we obtain is 0.21 eV, both for P m nu and ma, from the combination of ACT, Planck and BAO measurements. Restricting the analyses to the standard ?CDM picture, we find P m nu < 0.16 eV and ma < 0.18 eV, both at 95% CL Interestingly, the best background cosmology is never found within the minimal ?CDM plus hot relics, regardless of the datasets exploited in the analyses. The combination of Planck with either BAO, SPT or ACT prefers a universe with a nonzero value of the running in the primordial power spectrum with strong evidence. Small-scale CMB probes, both alone and combined with BAO, either prefer, with substantial evidence, nonflat universes (as in the case of SPT) or a model with a time varying dark energy component (as in the case of ACT).
Address [Di Valentino, Eleonora] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, England, Email: e.divalentino@sheffield.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000999454300009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5554
Permanent link to this record
 

 
Author Giusarma, E.; Di Valentino, E.; Lattanzi, M.; Melchiorri, A.; Mena, O.
Title (up) Relic neutrinos, thermal axions, and cosmology in early 2014 Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 4 Pages 043507 - 17pp
Keywords
Abstract We present up-to-date cosmological bounds on the sum of active neutrino masses as well as on extended cosmological scenarios with additional thermal relics, as thermal axions or sterile neutrino species. Our analyses consider all the current available cosmological data in the beginning of year 2014, including the very recent and most precise baryon acoustic oscillation measurements from the Baryon Oscillation Spectroscopic Survey. In the minimal three-active-neutrino scenario, we find Sigma m(nu) < 0.22 eV at 95% C.L. from the combination of cosmic microwave background (CMB), baryon acoustic oscillation, and Hubble Space Telescope measurements of the Hubble constant. A nonzero value for the sum of the three active neutrino masses of similar to 0.3 eV is significantly favored at more than three standard deviations when adding the constraints on s 8 and Om from the Planck cluster catalog on galaxy number counts. This preference for nonzero thermal relic masses disappears almost completely in both the thermal axion and massive sterile neutrino schemes. Extra light species contribute to the effective number of relativistic degrees of freedom, parametrized via N-eff. We found that when the recent detection of B mode polarization from the BICEP2 experiment is considered, an analysis of the combined CMB data in the framework of LCDM + r models gives N-eff = 3.90 +/- 0.42, suggesting the presence of an extra relativistic relic at more than 95% C.L. from CMB-only data.
Address [Giusarma, Elena; Di Valentino, Eleonora; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000347985100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2075
Permanent link to this record
 

 
Author Giusarma, E.; Archidiacono, M.; de Putter, R.; Melchiorri, A.; Mena, O.
Title (up) Sterile neutrino models and nonminimal cosmologies Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 85 Issue 8 Pages 083522 - 9pp
Keywords
Abstract Cosmological measurements are affected by the energy density of massive neutrinos. We extend here a recent analysis of current cosmological data to nonminimal cosmologies. Several possible scenarios are examined: a constant w not equal -1 dark energy equation of state, a nonflat universe, a time-varying dark energy component and coupled dark matter-dark energy universes or modified gravity scenarios. When considering cosmological data only, (3 + 2) massive neutrino models with similar to 0.5 eV sterile species are allowed at 95% confidence level. This scenario has been shown to reconcile reactor, LSND and MiniBooNE positive signals with null results from other searches. Big bang nucleosynthesis bounds could compromise the viability of (3 + 2) models if the two sterile species are fully thermalized states at decoupling.
Address [Giusarma, Elena; de Putter, Roland; Mena, Olga] Univ Valencia CSIC, IFIC, Valencia 46071, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000303118100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 984
Permanent link to this record
 

 
Author Vagnozzi, S.; Di Valentino, E.; Gariazzo, S.; Melchiorri, A.; Mena, O.; Silk, J.
Title (up) The galaxy power spectrum take on spatial curvature and cosmic concordance Type Journal Article
Year 2021 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 33 Issue Pages 100851 - 17pp
Keywords Cosmological parameters; Spatial curvature; Cosmological tensions
Abstract The concordance of the ACDM cosmological model in light of current observations has been the subject of an intense debate in recent months. The 2018 Planck Cosmic Microwave Background (CMB) temperature anisotropy power spectrum measurements appear at face value to favour a spatially closed Universe with curvature parameter Omega(K) < 0. This preference disappears if Baryon Acoustic Oscillation (BAO) measurements are combined with Planck data to break the geometrical degeneracy, although the reliability of this combination has been questioned due to the strong tension present between the two datasets when assuming a curved Universe. Here, we approach this issue from yet another point of view, using measurements of the full-shape (FS) galaxy power spectrum, P(k), from the Baryon Oscillation Spectroscopic Survey DR12 CMASS sample. By combining Planck data with FS measurements, we break the geometrical degeneracy and find Omega(K) = 0.0023 +/- 0.0028. This constrains the Universe to be spatially flat to sub-percent precision, in excellent agreement with results obtained using BAO measurements. However, as with BAO, the overall increase in the best-fit chi(2) suggests a similar level of tension between Planck and P(k) under the assumption of a curved Universe. While the debate on spatial curvature and the concordance between cosmological datasets remains open, our results provide new perspectives on the issue, highlighting the crucial role of FS measurements in the era of precision cosmology.
Address [Vagnozzi, Sunny] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England, Email: sunny.vagnozzi@ast.cam.ac.uk;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000704383100022 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4984
Permanent link to this record