toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lessa, L.A.; Maluf, R.V.; Silva, J.E.G.; Almeida, C.A.S. url  doi
openurl 
  Title (up) Braneworlds in warped Einsteinian cubic gravity Type Journal Article
  Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages 123 - 25pp  
  Keywords Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; gravity; modified gravity  
  Abstract Einstenian cubic gravity (ECG) is a modified theory of gravity constructed with cubic contractions of the curvature tensor. This theory has the remarkable feature of having the same two propagating degrees of freedom of Einstein gravity (EG), at the perturbative level on maximally symmetric spacetimes. The additional unstable modes steaming from the higher order derivative dynamics are suppressed provided that we consider the ECG as an effective field theory wherein the cubic terms are seen as perturbative corrections of the Einstein -Hilbert term. Extensions of ECG have been proposed in cosmology and compact objects in order to probe if this property holds in more general configurations. In this work, we construct a modified ECG gravity in a five dimensional warped braneworld scenario. By assuming a specific combination of the cubic parameters, we obtained modified gravity equations of motion with terms up to second -order. For a thin 3-brane, the cubic -gravity corrections yield an effective positive bulk cosmological constant. Thus, in order to keep the 5D bulk warped compact, an upper bound of the cubic parameter with respect to the bulk curvature was imposed. For a thick brane, the cubic -gravity terms modify the scalar field potential and its corresponding vacuum. Nonetheless, the domain -wall structure with a localized source is preserved. At the perturbative level, the Kaluza-Klein (KK) tensor gravitational modes are stable and possess a localized massless mode provided the cubic corrections are small compared to the EG braneworld.  
  Address [Lessa, L. A.; Maluf, R. V.; Silva, J. E. G.; Almeida, C. A. S.] Univ Fed Ceara UFC, Dept Fis, Campus Pici, BR-60455760 Fortaleza, CE, Brazil, Email: leandrolessa@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001240966600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6164  
Permanent link to this record
 

 
Author Beltran-Palau, P.; Ferreiro, A.; Navarro-Salas, J.; Pla, S. url  doi
openurl 
  Title (up) Breaking of adiabatic invariance in the creation of particles by electromagnetic backgrounds Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 8 Pages 085014 - 12pp  
  Keywords  
  Abstract Particles are spontaneously created from the vacuum by time-varying gravitational or electromagnetic backgrounds. It has been proven that the particle number operator in an expanding universe is an adiabatic invariant. In this paper we show that, in some special cases, the expected adiabatic invariance of the particle number fails in presence of electromagnetic backgrounds. In order to do this, we consider as a prototype a Sauter-type electric pulse. Furthermore, we also show a close relation between the breaking of the adiabatic invariance and the emergence of the axial anomaly.  
  Address [Beltran-Palau, Pau; Ferreiro, Antonio; Navarro-Salas, Jose; Pla, Silvia] Univ Valencia, CSIC, Ctr Mixto, Fac Fis,Dept Fis Teor, E-46100 Valencia, Spain, Email: pau.beltran@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000491467800009 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4184  
Permanent link to this record
 

 
Author Angles-Castillo, A.; Perez, A.; Roldan, E. url  doi
openurl 
  Title (up) Bright and dark solitons in a photonic nonlinear quantum walk: lessons from the continuum Type Journal Article
  Year 2024 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 26 Issue 2 Pages 023004 - 16pp  
  Keywords quantum walks; soliton; non-linear optics  
  Abstract We propose a nonlinear quantum walk model inspired in a photonic implementation in which the polarization state of the light field plays the role of the coin-qubit. In particular, we take profit of the nonlinear polarization rotation occurring in optical media with Kerr nonlinearity, which allows to implement a nonlinear coin operator, one that depends on the state of the coin-qubit. We consider the space-time continuum limit of the evolution equation, which takes the form of a nonlinear Dirac equation. The analysis of this continuum limit allows us to gain some insight into the existence of different solitonic structures, such as bright and dark solitons. We illustrate several properties of these solitons with numerical calculations, including the effect on them of an additional phase simulating an external electric field.  
  Address [Angles-Castillo, Andreu; Perez, Armando] Univ Valencia, Dept Fis Teor & IFIC, CSIC, Burjassot 46100, Valencia, Spain, Email: andreu.angles-castillo@uv.es  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001156767400001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5929  
Permanent link to this record
 

 
Author Valiente-Dobon, J.J.; Poves, A.; Gadea, A.; Fernandez-Dominguez, B. doi  openurl
  Title (up) Broken mirror symmetry in S-36 and Ca-36 Type Journal Article
  Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 98 Issue 1 Pages 011302 - 5pp  
  Keywords  
  Abstract Shape coexistence is a ubiquitous phenomenon in the neutron-rich nuclei belonging to (or sitting at the shores of) the N = 20 island of inversion (IoI). Exact isospin symmetry predicts the same behavior for their mirrors and the existence of a proton-rich IoI around Z = 20, centered in the (surely unbound) nucleus Ca-32. In this article we show that in Ca-36 and S-36, Coulomb effects break dramatically the mirror symmetry in the excitation energies due to the different structures of the intruder and normal states. The mirror energy difference (MED) of their 2(+) states is known to be very large at – 246 keV. We reproduce this value and predict the first excited state in Ca-36 to be a 0(+) at 2.7 MeV, 250 keV below the first 2(+). In its mirror S-36 the 0(+) lies at 55keV above the 2(+) measured at 3.291 MeV. Our calculations predict a huge MED of -720 keV, that we dub the “colossal” mirror energy difference. A possible reaction mechanism to access the O-2(+) in Ca-36 will be discussed. In addition, we theoretically address the MEDs of the A = 34, T = 3 and A = 32, T = 4 mirrors.  
  Address [Valiente-Dobon, J. J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000439059400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3661  
Permanent link to this record
 

 
Author Das, B. et al; Algora, A. doi  openurl
  Title (up) Broken seniority symmetry in the semimagic proton mid-shell nucleus 95Rh Type Journal Article
  Year 2024 Publication Physical Review Research Abbreviated Journal Phys. Rev. Res.  
  Volume 6 Issue 2 Pages L022038 - 7pp  
  Keywords  
  Abstract Lifetime measurements of low-lying excited states in the semimagic ( N = 50) nucleus 95 Rh have been performed by means of the fast -timing technique. The experiment was carried out using gamma -ray detector arrays consisting of LaBr 3 (Ce) scintillators and germanium detectors integrated into the DESPEC experimental setup commissioned for the Facility for Antiproton and Ion Research ( FAIR ) Phase -0, Darmstadt, Germany. The excited states in 95 Rh were populated primarily via the /3 decays of 95 Pd nuclei, produced in the projectile fragmentation of a 850 MeV / nucleon 124 Xe beam impinging on a 4 g / cm 2 9 Be target. The deduced electromagnetic E2 transition strengths for the gamma -ray cascade within the multiplet structure depopulating from the isomeric I pi = 21 / 2 + state are found to exhibit strong deviations from predictions of standard shell model calculations which feature approximately conserved seniority symmetry. In particular, the observation of a strongly suppressed E2 strength for the 13 / 2 + -> 9 / 2 + ground state transition cannot be explained by calculations employing standard interactions. This remarkable result may require revision of the nucleon-nucleon interactions employed in state-of-the-art theoretical model calculations, and might also point to the need for including three-body forces in the Hamiltonian.  
  Address [Das, B.; Cederwall, B.; Qi, C.; Aktas, O.; Liotta, R.; Vasiljevic, J.] KTH Royal Inst Technol, S-10691 Stockholm, Sweden, Email: b.das@gsi.de;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001240855200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6147  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva