|   | 
Details
   web
Records
Author Alvarez, M.; Cantero, J.; Czakon, M.; Llorente, J.; Mitov, A.; Poncelet, R.
Title (down) NNLO QCD corrections to event shapes at the LHC Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 129 - 24pp
Keywords Higher-Order Perturbative Calculations; Specific QCD Phenomenology
Abstract In this work we perform the first ever calculation of jet event shapes at hadron colliders at next-to-next-to leading order (NNLO) in QCD. The inclusion of higher order corrections removes the shape difference observed between data and next-to-leading order predictions. The theory uncertainty at NNLO is comparable to, or slightly larger than, existing measurements. Except for narrow kinematical ranges where all-order resummation becomes important, the NNLO predictions for the event shapes considered in the present work are reliable. As a prime application of the results derived in this work we provide a detailed investigation of the prospects for the precision determination of the strong coupling constant and its running through TeV scales from LHC data.
Address [Czakon, Michal] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany, Email: manuel.alvarez.estevez@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000992064600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5560
Permanent link to this record
 

 
Author NEXT Collaboration (Byrnes, N.K. et al); Carcel, S.; Carrion, J.V.; Lopez, F.; Lopez-March, N.; Martin-Albo, J.; Muñoz Vidal, J.; Novella, P.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.
Title (down) NEXT-CRAB-0: a high pressure gaseous xenon time projection chamber with a direct VUV camera based readout Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 8 Pages P08006 - 33pp
Keywords Double-beta decay detectors; Optical detector readout concepts; Particle tracking detectors (Gaseous detectors); Time projection chambers
Abstract The search for neutrinoless double beta decay (0νββ) remains one of the most compelling experimental avenues for the discovery in the neutrino sector. Electroluminescent gas-phase time projection chambers are well suited to 0νββ searches due to their intrinsically precise energy resolution and topological event identification capabilities. Scalability to ton-and multi-ton masses requires readout of large-area electroluminescent regions with fine spatial resolution, low radiogenic backgrounds, and a scalable data acquisition system. This paper presents a detector prototype that records event topology in an electroluminescent xenon gas TPC via VUV image-intensified cameras. This enables an extendable readout of large tracking planes with commercial devices that reside almost entirely outside of the active medium. Following further development in intermediate scale demonstrators, this technique may represent a novel and enlargeable method for topological event imaging in 0νββ.
Address [Byrnes, N. K.; Parmaksiz, I; Asaadi, J.; Baeza-Rubio, J.; Jones, B. J. P.; Mistry, K.; Moya, I. A.; Nygren, D. R.; Stogsdill, K.; Navarro, K. E.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001084390900004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5764
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko,, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Lacasta, C.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valiente Moreno, E.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M.
Title (down) New techniques for jet calibration with the ATLAS detector Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 8 Pages 761 - 41pp
Keywords
Abstract A determination of the jet energy scale is presented using proton-proton collision data with a centre-of-mass energy of root s = 13 TeV, corresponding to an integrated luminosity of 140 fb(-1) collected using the ATLAS detector at the LHC. Jets are reconstructed using the ATLAS particle-flow method that combines charged-particle tracks and topo-clusters formed from energy deposits in the calorimeter cells. The anti-kt jet algorithm with radius parameter R = 0.4 is used to define the jet. Novel jet energy scale calibration strategies developed for the LHC Run 2 are reported that lay the foundation for the jet calibration in Run 3. Jets are calibrated with a series of simulation-based corrections, including state-of-the-art techniques in jet calibration such as machine learning methods and novel in situ calibrations to achieve better performance than the baseline calibration derived using up to 81 fb(-1) of Run 2 data. The performance of these new techniques is then examined in the in situ measurements by exploiting the transverse momentum balance between a jet and a reference object. The b-quark jet energy scale using particle flow jets is measured for the first time with around 1% precision using gamma+jet events.
Address [Deliot, F.; Duvnjak, D.; Jackson, P.; Kong, A. X. Y.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001062421500007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5731
Permanent link to this record
 

 
Author Beenakker, W.; Caron, S.; Kip, J.; Ruiz de Austri, R.; Zhang, Z.
Title (down) New energy spectra in neutrino and photon detectors to reveal hidden dark matter signals Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 028 - 13pp
Keywords
Abstract Neutral particles capable of travelling cosmic distances from a source to detectors on Earth are limited to photons and neutrinos. Examination of the Dark Matter annihilation/decay spectra for these particles reveals the presence of continuum spectra (e.g. due to fragmentation and W or Z decay) and peaks (due to direct annihilations/decays). However, when one explores extensions of the Standard Model (BSM), unexplored spectra emerge that differ significantly from those of the Standard Model (SM) for both neutrinos and photons. In this paper, we argue for the inclusion of important spectra that include peaks as well as previously largely unexplored entities such as boxes and combinations of box, peak and continuum decay spectra.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6085
Permanent link to this record
 

 
Author n_TOF Collaboration (Tarrío, D. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.
Title (down) Neutron-induced fission cross sections of Th-232 and U-233 up to 1 GeV using parallel plate avalanche counters at the CERN n_TOF facility Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 107 Issue 4 Pages 044616 - 21pp
Keywords
Abstract The neutron-induced fission cross sections of Th-232 and U-233 were measured relative to U-235 in a wide neutron energy range up to 1 GeV (and from fission threshold in the case of Th-232, and from 0.7 eV in case of U-233), using the white-spectrum neutron source at the CERN Neutron Time-of-Flight (nTOF) facility. Parallel plate avalanche counters (PPACs) were used, installed at the Experimental Area 1 (EAR1), which is located at 185 m from the neutron spallation target. The anisotropic emission of fission fragments were taken into account in the detection efficiency by using, in the case of U-233, previous results available in EXFOR, whereas in the case of Th-232 these data were obtained from our measurement, using PPACs and targets tilted 45 degrees with respect to the neutron beam direction. Finally, the obtained results are compared with past measurements and major evaluated nuclear data libraries. Calculations using the high-energy reaction models INCL++ and ABLA07 were performed and some of their parameters were modified to reproduce the experimental results. At high energies, where no other neutron data exist, our results are compared with experimental data on proton-induced fission. Moreover, the dependence of the fission cross section at 1 GeV with the fissility parameter of the target nucleus is studied by combining those ( p, f) data with our (n, f) data on Th-232 and U-233 and on other isotopes studied earlier at nTOF using the same experimental setup.
Address [Tarrio, D.] Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden, Email: diego.tarrio@physics.uu.se
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001021341000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5618
Permanent link to this record