toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Stadler, J.; Boehm, C.; Mena, O. url  doi
openurl 
  Title (up) Comprehensive study of neutrino-dark matter mixed damping Type Journal Article
  Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 08 Issue 8 Pages 014 - 23pp  
  Keywords CMBR theory; cosmological perturbation theory; neutrino properties; power spectrum  
  Abstract Mixed damping is a physical effect that occurs when a heavy species is coupled to a relativistic fluid which is itself free streaming. As a cross-case between collisional damping and free-streaming, it is crucial in the context of neutrino-dark matter interactions. In this work, we establish the parameter space relevant for mixed damping, and we derive an analytical approximation for the evolution of dark matter perturbations in the mixed damping regime to illustrate the physical processes responsible for the suppression of cosmological perturbations. Although extended Boltzmann codes implementing neutrino-dark matter scattering terms automatically include mixed damping, this effect has not been systematically studied. In order to obtain reliable numerical results, it is mandatory to reconsider several aspects of neutrino-dark matter interactions, such as the initial conditions, the ultra-relativistic fluid approximation and high order multiple moments in the neutrino distribution. Such a precise treatment ensures the correct assessment of the relevance of mixed damping in neutrino-dark matter interactions.  
  Address [Stadler, Julia] Univ Durham, Inst Particle Phys Phenomenol, South Rd, Durham DH1 3LE, England, Email: julia.j.stadler@durham.ac.uk;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000481534700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4111  
Permanent link to this record
 

 
Author AGATA and PRISMA Collaborations (Gadea, A. et al) doi  openurl
  Title (up) Conceptual design and infrastructure for the installation of the first AGATA sub-array at LNL Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 654 Issue 1 Pages 88-96  
  Keywords AGATA; PRISMA spectrometer; DANTE heavy-ion detector; HELENA multiplicity filter; Cologne plunger; TRACE Si detector  
  Abstract The first implementation of the AGATA spectrometer consisting of five triple germanium detector clusters has been installed at Laboratori Nazionali di Legnaro, INFN. This setup has two major goals, the first one is to validate the gamma-tracking concept and the second is to perform an experimental physics program using the stable beams delivered by the Tandem-PIAVE-ALPI accelerator complex. A large variety of physics topics will be addressed during this campaign, aiming to investigate both neutron and proton-rich nuclei. The setup has been designed to be coupled with the large-acceptance magnetic-spectrometer PRISMA. Therefore, the in-beam prompt gamma rays detected with AGATA will be measured in coincidence with the products of multinucleon-transfer and deep-inelastic reactions measured by PRISMA. Moreover, the setup is versatile enough to host ancillary detectors, including the heavy-ion detector DANTE, the gamma-ray detector array HELENA, the Cologne plunger for lifetime measurements and the Si-pad telescope TRACE. In this paper the design; characteristics and performance figures of the setup will be described.  
  Address [Gadea, A] Univ Valencia, CSIC, IFIC, Inst Fis Corpuscular IFIC, E-46003 Valencia, Spain, Email: gadea@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000295765100014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 791  
Permanent link to this record
 

 
Author XENON Collaboration (Aprile, E. et al); Orrigo, S.E.A. url  doi
openurl 
  Title (up) Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 9 Issue Pages P11006 - 20pp  
  Keywords Cherenkov detectors; Cherenkov and transition radiation; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Dark Matter detectors (WIMPs, axions, etc.)  
  Abstract XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2.10(47) cm(2) for WIMP masses around 50 GeV/c(2), which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of similar to 10m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (> 99.5%) and showers of secondary particles from muon interactions in the rock (> 70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.  
  Address [Aprile, E.; Contreras, H.; Goetzke, L. W.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.] Columbia Univ, Dept Phys, New York, NY 10027 USA, Email: dr.serena.fattori@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000345026000020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2061  
Permanent link to this record
 

 
Author Doncel, M.; Cederwall, B.; Martin, S.; Quintana, B.; Gadea, A.; Farnea, E.; Algora, A. doi  openurl
  Title (up) Conceptual design of a high resolution Ge array with tracking and imaging capabilities for the DESPEC (FAIR) experiment Type Journal Article
  Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 10 Issue Pages P06010 - 15pp  
  Keywords Gamma detectors (scintillators, CZT, HPG, HgI etc); Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc)  
  Abstract We present results of Monte Carlo simulations for the conceptual design of the high-resolution DESPEC Germanium Array Spectrometer (DEGAS) proposed for the Facility for Ion and Antiproton Research (FAIR) under construction at Darmstadt, Germany. The project is carried out in three phases, although only results for the two first phases will be addressed in this work. The first phase will consist of a re-arrangement of the EUROBALL cluster detectors previously used in the RISING campaign at GSI. The second phase is based on coupling AGATA-type triple-cluster detectors with EUROBALL cluster detectors in a compact geometry around the active ion implantation target of DESPEC.  
  Address [Doncel, M.; Cederwall, B.] Royal Inst Technol, Dept Phys, S-10691 Stockholm, Sweden, Email: doncel@kth.se  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000358004200026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2316  
Permanent link to this record
 

 
Author BRIKEN Collaboration (Tarifeño-Saldivia, A. et al); Tain, J.L.; Domingo-Pardo, C.; Agramunt, J.; Algora, A.; Morales, A.I.; Rubio, B.; Tolosa, A. url  doi
openurl 
  Title (up) Conceptual design of a hybrid neutron-gamma detector for study of beta-delayed neutrons at the RIB facility of RIKEN Type Journal Article
  Year 2017 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 12 Issue Pages P04006 - 22pp  
  Keywords Detector modelling and simulations I (interaction of radiation with matter, interaction; of photons with matter, interaction of hadrons with matter, etc); Instrumentation for radioactive beams (fragmentation devices; fragment and isotope, separators incl. ISOL; isobar separators; ion and atom traps; weak-beam diagnostics; radioactive-beam ion sources); Neutron detectors (cold, thermal, fast neutrons)  
  Abstract BRIKEN is a complex detection system to be installed at the RIB-facility of the RIKEN Nishina Center. It is aimed at the detection of heavy-ion implants, β-particles, γ-rays and β-delayed neutrons. The whole detection setup involves the Advanced Implantation Detection Array (AIDA), two HPGe Clover detectors and a large set of 166 counters of 3He embedded in a high-density polyethylene matrix. This article reports on a novel methodology developed for the conceptual design and optimisation of the 3He-tubes array, aiming at the best possible performance in terms of neutron detection. The algorithm is based on a geometric representation of two selected parameters of merit, namely, average neutron detection efficiency and efficiency flatness, as a function of a reduced number of geometric variables. The response of the detection system itself, for each configuration, is obtained from a systematic MC-simulation implemented realistically in Geant4. This approach has been found to be particularly useful. On the one hand, due to the different types and large number of 3He-tubes involved and, on the other hand, due to the additional constraints introduced by the ancillary detectors for charged particles and gamma-rays. Empowered by the robustness of the algorithm, we have been able to design a versatile detection system, which can be easily re-arranged into a compact mode in order to maximize the neutron detection performance, at the cost of the gamma-ray sensitivity. In summary, we have designed a system which shows, for neutron energies up to 1(5) MeV, a rather flat and high average efficiency of 68.6%(64%) and 75.7%(71%) for the hybrid and compact modes, respectively. The performance of the BRIKEN system has been also quantified realistically by means of MC-simulations made with different neutron energy distributions.  
  Address [Tarifeno-Saldivia, A.] UPC, Barcelona, Spain, Email: ariel.esteban.tarifeno@upc.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000405067800006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3209  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva