|   | 
Details
   web
Records
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Valls, P.; Ruiz Vidal, J.; Sanchez Mayordomo, C.
Title (up) Bose-Einstein correlations of same-sign charged pions in the forward region in pp collisions at root s=7 TeV Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 025 - 22pp
Keywords Hadron-Hadron scattering (experiments); Particle correlations and fluctuations; QCD
Abstract Bose-Einstein correlations of same-sign charged pions, produced in proton-proton collisions at a 7TeV centre-of-mass energy, are studied using a data sample collected by the LHCb experiment. The signature for Bose-Einstein correlations is observed in the form of an enhancement of pairs of like-sign charged pions with small four-momentum difference squared. The charged-particle multiplicity dependence of the Bose-Einstein correlation parameters describing the correlation strength and the size of the emitting source is investigated, determining both the correlation radius and the chaoticity parameter. The measured correlation radius is found to increase as a function of increasing charged-particle multiplicity, while the chaoticity parameter is seen to decrease.
Address [Bediagal, I.; Torres, M. Cruz; De Mirandal, J. M.; Gomes, A.; Maev, O.; Massafferri, A.; Rodriguezl, J. Molina; dos Reis, A. C.; Rodrigues, A. B.; Guimaraes, V. Salustino; Schneider, O.; Lavra, O. Soares; Aoude, R. Tourinho Jadallah] CBPF, Rio De Janeiro, Brazil, Email: Marcin.Kucharczyk@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000417757900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3428
Permanent link to this record
 

 
Author Maso-Ferrando, A.; Sanchis-Gual, N.; Font, J.A.; Olmo, G.J.
Title (up) Boson stars in Palatini f(R) gravity Type Journal Article
Year 2021 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 38 Issue 19 Pages 194003 - 25pp
Keywords boson stars; Palatini formalism; modified gravity
Abstract We explore equilibrium solutions of spherically symmetric boson stars in the Palatini formulation of f (R) gravity. We account for the modifications introduced in the gravitational sector by using a recently established correspondence between modified gravity with scalar matter and general relativity with modified scalar matter. We focus on the quadratic theory f (R) = R + xi R-2 and compare its solutions with those found in general relativity, exploring both positive and negative values of the coupling parameter xi. As matter source, a complex, massive scalar field with and without self-interaction terms is considered. Our results show that the existence curves of boson stars in Palatini f (R) gravity are fairly similar to those found in general relativity. Major differences are observed for negative values of the coupling parameter which results in a repulsive gravitational component for high enough scalar field density distributions. Adding self-interactions makes the degeneracy between f (R) and general relativity even more pronounced, leaving very little room for observational discrimination between the two theories.
Address [Maso-Ferrando, Andreu; Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto Univ Valencia CSIC, Valencia 46100, Spain, Email: andreu.maso@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000695280300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4964
Permanent link to this record
 

 
Author Camarero, D.; de Azcarraga, J.A.; Izquierdo, J.M.
Title (up) Bosonic D=11 supergravity from a generalized Chern-Simons action Type Journal Article
Year 2017 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 923 Issue Pages 633-652
Keywords
Abstract It is shown that the action of the bosonic sector of D= 11supergravity may be obtained by means of a suitable scaling of the originally dimensionless fields of a generalized Chern-Simons action. This follows from the eleven-form CS-potential of the most general linear combination of closed, gauge invariant twelve-forms involving the sp(32)-valued two-form curvatures supplemented by a three-form field. In this construction, the role of the skewsymmetric four-index auxiliary function needed for the first order formulation of D= 11supergravity is played by the gauge field associated with the five Lorentz indices generator of the bosonic sp(32) subalgebra of osp(1|32).
Address [Camarero, D.; Izquierdo, J. M.] Univ Valladolid, Dept Fis Teor, E-47011 Valladolid, Spain, Email: j.a.de.azcarraga@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000413405200028 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3333
Permanent link to this record
 

 
Author Sun, Z.F.; Xie, J.J.; Oset, E.
Title (up) Bottom strange molecules with isospin 0 Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 9 Pages 094031 - 9pp
Keywords
Abstract Using the local hidden gauge approach, we study the possibility of the existence of bottom strange molecular states with isospin 0. We find three bound states with spin parity 0(+), 1(+), and 2(+) generated by the (K) over bar *B* and omega B-s(*) interaction, among which the state with spin 2 can be identified as B(s2)(*()5840). In addition, we also study the (K) over bar *B* and omega B-s(*) interaction and find a bound state which can be associated to B-s1(5830). In addition, the (K) over barB*, eta B-s(*)(K) over barB, and eta B-s systems are studied, and two bound states are predicted. We expect that further experiments can confirm our predictions.
Address [Sun, Zhi-Feng] Lanzhou Univ, Sch Phys Sci & Technol, Lanzhou 730000, Peoples R China, Email: sunzf@lzu.edu.cn;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000433912000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3615
Permanent link to this record
 

 
Author Pich, A.; Rosell, I.; Sanz-Cillero, J.J.
Title (up) Bottom-up approach within the electroweak effective theory: Constraining heavy resonances Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 3 Pages 035012 - 12pp
Keywords
Abstract The LHC has confirmed the existence of a mass gap between the known particles and possible new states. Effective field theory is then the appropriate tool to search for low-energy signals of physics beyond the Standard Model. We adopt the general formalism of the electroweak effective theory, with a nonlinear realization of the electroweak symmetry breaking, where the Higgs is a singlet with independent couplings. At higher energies we consider a generic resonance Lagrangian which follows the above-mentioned nonlinear realization and couples the light particles to bosonic heavy resonances with J(P) = 0(+/-) and J(P) = 1(+/-). Integrating out the resonances and assuming a proper short-distance behavior, it is possible to determine or to constrain most of the bosonic low-energy constants in terms of resonance masses. Therefore, the current experimental bounds on these bosonic low-energy constants allow us to constrain the resonance masses above the TeV scale, by following a typical bottom-up approach, i.e., the fit of the low-energy constants to precise experimental data enables us to learn about the high-energy scales, the underlying theory behind the Standard Model.
Address [Pich, Antonio] Univ Valencia, CSIC, IFIC, Apt Correus 22085, Valencia 46071, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000557730600006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4497
Permanent link to this record