toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Viñals, S.; Nacher, E.; Tengblad, O.; Borge, M.J.G.; Briz, J.A.; Gad, A.; Munch, M.; Perea, A. doi  openurl
  Title (up) Calibration and response function of a compact silicon-detector set-up for charged-particle spectroscopy using GEANT4 Type Journal Article
  Year 2021 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 57 Issue 2 Pages 49 - 9pp  
  Keywords  
  Abstract A complete methodology for detector calibration and energy-loss correction in charged-particle spectroscopy is presented. This has been applied to a compact set-up of four silicon detectors used for beta-delayed particle spectroscopy. The characterisation of the set-up was carried out using GEANT4 Monte Carlo simulations and standard alpha-calibration sources. The response function of the system was in this way accurately determined to be used for spectral unfolding.  
  Address [Vinals, S.; Tengblad, O.; Borge, M. J. G.; Briz, J. A.; Perea, A.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain, Email: enrique.nacher@csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000615748600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4710  
Permanent link to this record
 

 
Author Quintero-Quintero, A.; Patiño-Camargo, G.; Soriano, A.; Palma, J.D.; Vilar-Palop, J.; Pujades, M.C.; Llorca-Domaica, N.; Ballester, F.; Vijande, J.; Candela-Juan, C. doi  openurl
  Title (up) Calibration of a thermoluminescent dosimeter worn over lead aprons in fluoroscopy guided procedures Type Journal Article
  Year 2018 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.  
  Volume 38 Issue 2 Pages 549-563  
  Keywords backscatter correction factor; TLD; lead apron; fluoroscopy; eye lens dose  
  Abstract Fluoroscopy guided interventional procedures provide remarkable benefits to patients. However, medical staff working near the scattered radiation field may be exposed to high cumulative equivalent doses, thus requiring shielding devices such as lead aprons and thyroid collars. In this situation, it remains an acceptable practice to derive equivalent doses to the eye lenses or other unprotected soft tissues with a dosimeter placed above these protective devices. Nevertheless, the radiation backscattered by the lead shield differs from that generated during dosimeter calibration with a water phantom. In this study, a passive personal thermoluminescent dosimeter (TLD) was modelled by means of the Monte Carlo (MC) code Penelope. The results obtained were validated against measurements performed in reference conditions in a secondary standard dosimetry laboratory. Next, the MC model was used to evaluate the backscatter correction factor needed for the case where the dosimeter is worn over a lead shield to estimate the personal equivalent dose H-p(0.07) to unprotected soft tissues. For this purpose, the TLD was irradiated over a water slab phantom with a photon beam representative of the result of a fluoroscopy beam scattered by a patient. Incident beam angles of 0 degrees and 60 degrees, and lead thicknesses between the TLD and phantom of 0.25 and 0.5 mm Pb were considered. A backscatter correction factor of 1.23 (independent of lead thickness) was calculated comparing the results with those faced in reference conditions (i.e., without lead shield and with an angular incidence of 0 degrees). The corrected dose algorithm was validated in laboratory conditions with dosi-meters irradiated over a thyroid collar and angular incidences of 0 degrees, 40 degrees and 60 degrees, as well as with dosimeters worn by interventional radiologists and cardiologists. The corrected dose algorithm provides a better approach to estimate the equivalent dose to unprotected soft tissues such as eye lenses. Dosimeters that are not shielded from backscatter radiation might underestimate personal equivalent doses when worn over a lead apron and, therefore, should be specifically characterized for this purpose.  
  Address [Quintero-Quintero, A.; Patino-Camargo, G.] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Valencia, Spain, Email: ccanjuan@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0952-4746 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000428913900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3552  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko,, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title (up) Calibration of the light-flavour jet mistagging efficiency of the b-tagging algorithms with Z plus jets events using 139 fb<SUP>-1</SUP> of ATLAS proton-proton collision data at √s=13 TeV Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 8 Pages 728 - 30pp  
  Keywords  
  Abstract The identification of b-jets, referred to as b-tagging, is an important part of many physics analyses in the ATLAS experiment at the Large Hadron Collider and an accurate calibration of its performance is essential for high-quality physics results. This publication describes the calibration of the light-flavour jet mistagging efficiency in a data sample of proton-proton collision events at root s = 13 TeV corresponding to an integrated luminosity of 139 fb(-1). The calibration is performed in a sample of Z bosons produced in association with jets. Due to the low mistagging efficiency for light-flavour jets, a method which uses modified versions of the b-tagging algorithms referred to as flip taggers is used in this work. A fit to the jet-flavour-sensitive secondary-vertex mass is performed to extract a scale factor from data, to correct the light-flavour jet mistagging efficiency in Monte Carlo simulations, while simultaneously correcting the b-jet efficiency. With this procedure, uncertainties coming from the modeling of jets from heavy-flavour hadrons are considerably lower than in previous calibrations of the mistagging scale factors, where they were dominant. The scale factors obtained in this calibration are consistent with unity within uncertainties.  
  Address [Filmer, E. K.; Jackson, P.; Kong, A. X. Y.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001062397300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5782  
Permanent link to this record
 

 
Author NEXT Collaboration (Martinez-Lema, G. et al); Palmeiro, B.; Botas, A.; Laing, A.; Renner, J.; Simon, A.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Kekic, M.; Lopez-March, N.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Perez, J.; Querol, M.; Rodriguez, J.; Romo-Lugue, C.; Sorel, M.; Torrent, J.; Yahlali, N. url  doi
openurl 
  Title (up) Calibration of the NEXT-White detector using Kr-83m decays Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 13 Issue Pages P10014 - 21pp  
  Keywords Charge transport; multiplication and electroluminescence in rare gases and liquids; Gaseous imaging and tracking detectors; Time projection Chambers (TPC); Double-beta decay detectors  
  Abstract The NEXT-White (NEW) detector is currently the largest radio-pure high-pressure xenon gas time projection chamber with electroluminescent readout in the world. It has been operating at Laboratorio Subterraneo de Canfranc (LSC) since October 2016. This paper describes the calibrations performed using Kr-83m decays during a long run taken from March to November 2017 (Run II). Krypton calibrations are used to correct for the finite drift-electron lifetime as well as for the dependence of the measured energy on the event transverse position which is caused by variations in solid angle coverage both for direct and reflected light and edge effects. After producing calibration maps to correct for both effects we measure an excellent energy resolution for 41.5 keV point-like deposits of (4.553 +/- 0.010 (stat.) +/- 0.324 (sys.)) % FWHM in the full chamber and (3.804 +/- 0.013 (stat.) +/- 0.112 (sys.)) % FWHM in a restricted fiducial volume. Using naive 1/root E scaling, these values translate into resolutions of (0.5916 +/- 0.0014 (stat.) +/- 0.0421 (sys.)) % FWHM and (0.4943 +/- 0.0017 (stat.) +/- 0.0146 (sys.)) % FWHM at the Q(beta beta) energy of xenon double beta decay (2458 keV), well within range of our target value of 1%.  
  Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: gonzalo.martinez.lema@usc.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000447061800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3754  
Permanent link to this record
 

 
Author Bernabeu, J.; Di Domenico, A. url  doi
openurl 
  Title (up) Can future observation of the living partner post-tag the past decayed state in entangled neutral K mesons? Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 11 Pages 116004 - 8pp  
  Keywords  
  Abstract Entangled neutral K mesons allow for the study of their correlated dynamics at interference and decoherence times not accessible in any other system. We find novel quantum phenomena associated to a correlation in time between the two partners: The past state of the first decayed kaon, when it was entangled before its decay, is post-tagged by the result and the time of the future observation of the second decay channel. This surprising “from future to past” effect is fully observable and leads to the unique experimental tag of the K-S state, an unsolved problem since the discovery of CP violation.  
  Address [Bernabeu, Jose] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: jose.bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000892122400008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5431  
Permanent link to this record
 

 
Author Agarwalla, S.K.; Masud, M. url  doi
openurl 
  Title (up) Can Lorentz invariance violation affect the sensitivity of deep underground neutrino experiment? Type Journal Article
  Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 80 Issue 8 Pages 716 - 18pp  
  Keywords  
  Abstract We examine the impact of Lorentz Invariance Violation (LIV) in measuring the octant of theta(23) and CP phases in the context of the Deep Underground Neutrino Experiment (DUNE). We consider the CPT-violating LIV parameters involving e-mu(a(e mu)) and e-tau (a(e tau)) flavors, which induce an additional interference term in neutrino and antineutrino appearance probabilities. This newinterference term depends on both the standard CP phase delta and the new dynamical CP phase phi(e mu)/phi(e tau), giving rise to new degeneracies among (theta(23), delta, phi). Taking one LIV parameter at-a-time and considering a small value of vertical bar a(e mu)vertical bar = vertical bar a(e tau)vertical bar = 5 x 10(-24) GeV, we find that the octant discovery potential of DUNE gets substantially deteriorated for unfavorable combinations of delta and phi(e mu)/phi(e tau). The octant of theta(23) can only be resolved at 3 sigma if the true value of sin(2) theta(23) less than or similar to 0.42 or >= 0.62 for any choices of delta and phi. Interestingly, we also observe that when both the LIV parameters a(e mu) and a(e tau) are present together, they cancel out the impact of each other to a significant extent, allowing DUNE to largely regain its octant resolution capability. We also reconstruct the CP phases delta and phi(e mu)/phi(e tau). The typical 1 sigma uncertainty on delta is 10-15 degrees. and the same on phi(e mu)/phi(e tau) is 25-30 degrees depending on the choices of their true values.  
  Address [Agarwalla, Sanjib Kumar; Masud, Mehedi] Inst Phys, Sachivalaya Marg, Bhubaneswar 751005, India, Email: sanjib@iopb.res.in;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000557368800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4493  
Permanent link to this record
 

 
Author Araújo, M.C.; Furtado, J.; Maluf, R.V. url  doi
openurl 
  Title (up) Casimir effect in a Lorentz-violating tensor extension of a scalar field theory Type Journal Article
  Year 2024 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus  
  Volume 139 Issue 2 Pages 165 - 12pp  
  Keywords  
  Abstract This paper investigates the Casimir energy modifications due to the Lorentz-violating CPT-even contribution in an extension of the scalar QED. We have considered the complex scalar field satisfying Dirichlet boundary conditions between two parallel plates separated by a small distance. An appropriate tensor parametrization allowed us to study the Casimir effect in three different configurations: isotropic, anisotropic parity-odd, and anisotropic parity-even. We have shown that the Lorentz-violating contributions can promote either an increase or a decrease in the Casimir energy evaluated in the isotropic configuration, depending on whether the violation parameters are taking as positive or negative values. On the other hand, for the anisotropic parity-even case the Casimir energy only decreases, while for the anisotropic parity-odd cases it only increases. Therefore, from these last two results it seems that the Casimir energy is sensitive to the parity of Lorentz-violating coefficients.  
  Address [Araujo, M. C.; Maluf, R. V.] Univ Fed Ceara UFC, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, Ceara, Brazil, Email: michelangelo@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-5444 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001163697500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5964  
Permanent link to this record
 

 
Author Aguilera-Verdugo, J.J.; Hernandez-Pinto, R.J.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J. url  doi
openurl 
  Title (up) Causal representation of multi-loop Feynman integrands within the loop-tree duality Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 69 - 26pp  
  Keywords Duality in Gauge Field Theories; Perturbative QCD; Scattering Amplitudes  
  Abstract The numerical evaluation of multi-loop scattering amplitudes in the Feynman representation usually requires to deal with both physical (causal) and unphysical (non-causal) singularities. The loop-tree duality (LTD) offers a powerful framework to easily characterise and distinguish these two types of singularities, and then simplify analytically the underling expressions. In this paper, we work explicitly on the dual representation of multi-loop Feynman integrals generated from three parent topologies, which we refer to as Maximal, Next-to-Maximal and Next-to-Next-to-Maximal loop topologies. In particular, we aim at expressing these dual contributions, independently of the number of loops and internal configurations, in terms of causal propagators only. Thus, providing very compact and causal integrand representations to all orders. In order to do so, we reconstruct their analytic expressions from numerical evaluation over finite fields. This procedure implicitly cancels out all unphysical singularities. We also interpret the result in terms of entangled causal thresholds. In view of the simple structure of the dual expressions, we integrate them numerically up to four loops in integer space-time dimensions, taking advantage of their smooth behaviour at integrand level.  
  Address [Jesus Aguilera-Verdugo, J.; Rodrigo, German; Sborlini, German F. R.; Torres Bobadilla, William J.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif, E-46980 Valencia, Spain, Email: jesus.aguilera@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000609437600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4697  
Permanent link to this record
 

 
Author Krupczak, R.; da Silva, T.N.; Domingues, T.S.; Luzum, M.; Denicol, G.S.; Gardim, F.G.; Giannini, A.V.; Ferreira, M.N.; Hippert, M.; Noronha, J.; Chinellato, D.D.; Takahashi, J. url  doi
openurl 
  Title (up) Causality violations in simulations of large and small heavy-ion collisions Type Journal Article
  Year 2024 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 109 Issue 3 Pages 034908 - 12pp  
  Keywords  
  Abstract Heavy-ion collisions, such as Pb-Pb or p-Pb, produce extreme conditions in temperature and density that make the hadronic matter transition to a new state, called quark-gluon plasma (QGP). Simulations of heavy-ion collisions provide a way to improve our understanding of the QGP's properties. These simulations are composed of a hybrid description that results in final observables in agreement with accelerators like LHC and RHIC. However, recent works pointed out that these hydrodynamic simulations can display acausal behavior during the evolution in certain regions, indicating a deviation from a faithful representation of the underlying QCD dynamics. To pursue a better understanding of this problem and its consequences, this work simulated two different collision systems, Pb-Pb and p-Pb at root sNN = 5.02 TeV. In this context, our results show that causality violation, even though always present, typically occurs on a small part of the system, quantified by the total energy fraction residing in the acausal region. In addition, the acausal behavior can be reduced with changes in the prehydrodynamic factors and the definition of the bulk-viscous relaxation time. Since these aspects are fairly arbitrary in current simulation models, without solid guidance from the underlying theory, it is reasonable to use the disturbing presence of acausal behavior in current simulations to guide improvements towards more realistic modeling. While this work does not solve the acausality problem, it sheds more light on this issue and also proposes a way to solve this problem in simulations of heavy-ion collisions.  
  Address [Krupczak, Renata; da Silva, Tiago Nunes] Univ Fed Santa Catarina, Ctr Ciencias Fis & Matemat, Dept Fis, Campus Univ Reitor Joao David Ferreira Lima, BR-88040900 Florianopolis, Brazil, Email: rkrupczak@physik.uni-bielefeld.de;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001198699800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6113  
Permanent link to this record
 

 
Author Aguilera-Verdugo, J.J.; Driencourt-Mangin, F.; Plenter, J.; Ramirez-Uribe, S.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.; Tracz, S. url  doi
openurl 
  Title (up) Causality, unitarity thresholds, anomalous thresholds and infrared singularities from the loop-tree duality at higher orders Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 163 - 12pp  
  Keywords Duality in Gauge Field Theories; Perturbative QCD; Scattering Amplitudes  
  Abstract We present the first comprehensive analysis of the unitarity thresholds and anomalous thresholds of scattering amplitudes at two loops and beyond based on the loop- tree duality, and show how non-causal unphysical thresholds are locally cancelled in an efficient way when the forest of all the dual on-shell cuts is considered as one. We also prove that soft and collinear singularities at two loops and beyond are restricted to a compact region of the loop three-momenta, which is a necessary condition for implementing a local cancellation of loop infrared singularities with the ones appearing in real emission; without relying on a subtraction formalism.  
  Address [Aguilera-Verdugo, J. Jesus; Driencourt-Mangin, Felix; Plenter, Judith; Ramirez-Uribe, Selomit; Rodrigo, German; Sborlini, German F. R.; Torres Bobadilla, William J.; Tracz, Szymon] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, Parc Cient, E-46980 Valencia, Spain, Email: jesus.aguilera@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000513535500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4288  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva