toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Adams, D. et al; Vos, M. url  doi
openurl 
  Title (down) Towards an understanding of the correlations in jet substructure Type Journal Article
  Year 2015 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 75 Issue 9 Pages 409 - 52pp  
  Keywords  
  Abstract Over the past decade, a large number of jet substructure observables have been proposed in the literature, and explored at the LHC experiments. Such observables attempt to utilize the internal structure of jets in order to distinguish those initiated by quarks, gluons, or by boosted heavy objects, such as top quarks and W bosons. This report, originating from and motivated by the BOOST2013 workshop, presents original particle-level studies that aim to improve our understanding of the relationships between jet substructure observables, their complementarity, and their dependence on the underlying jet properties, particularly the jet radius and jet transverse momentum. This is explored in the context of quark/gluon discrimination, boosted W boson tagging and boosted top quark tagging.  
  Address [Adams, D.] Brookhaven Natl Lab, Upton, NY 11973 USA, Email: b.cooper@ucl.ac.uk  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000366305400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2500  
Permanent link to this record
 

 
Author Holz, S.; Plenter, J.; Xiao, C.W.; Dato, T.; Hanhart, C.; Kubis, B.; Meissner, U.G.; Wirzba, A. url  doi
openurl 
  Title (down) Towards an improved understanding of eta -> gamma*gamma * Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 11 Pages 1002 - 15pp  
  Keywords  
  Abstract We argue that high-quality data on the reaction e(+)e(-) -> pi(+) pi(-) eta will allow one to determine the doubly-virtual form factor eta -> gamma*gamma* in a model-independent way with controlled accuracy. This is an important step towards a reliable evaluation of the hadronic light-by-light scattering contribution to the anomalous magnetic moment of themuon. When analyzing the existing data for e(+) e(-) -> pi(+) pi(-) eta for total energies squared k(2) > 1GeV(2), we demonstrate that the effect of the a(2) meson provides a natural breaking mechanism for the commonly employed factorization ansatz in the doubly-virtual form factor F-eta gamma*gamma* (q(2), k(2)). However, better data are needed to draw firm conclusions.  
  Address [Holz, S.; Plenter, J.; Dato, T.; Kubis, B.; Meissner, U-G] Univ Bonn, Helmholtz Inst Strahlen & Kemphys Theorie, D-53115 Bonn, Germany, Email: holz@hiskp.uni-bonn.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000718113500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5024  
Permanent link to this record
 

 
Author Baeza-Ballesteros, J.; Donini, A.; Molina-Terriza, G.; Monrabal, F.; Simon, A. url  doi
openurl 
  Title (down) Towards a realistic setup for a dynamical measurement of deviations from Newton's 1/r2 law: the impact of air viscosity Type Journal Article
  Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 84 Issue 6 Pages 596 - 20pp  
  Keywords  
  Abstract A novel experimental setup to measure deviations from the 1/r(2) distance dependence of Newtonian gravity was proposed in Donini and Marimon (Eur Phys J C 76:696, 2016). The underlying theoretical idea was to study the orbits of a microscopically-sized planetary system composed of a “Satellite”, with mass m(S) similar to O(10-9) g, and a “Planet”, with mass M-P similar to O(10-5) g at an initial distance of hundreds of microns. The detection of precession of the orbit in this system would be an unambiguous indication of a central potential with terms that scale with the distance differently from 1/r. This is a huge advantage with respect to the measurement of the absolute strength of the attraction between two bodies, as most electrically-induced background potentials do indeed scale as 1/r. Detection of orbit precession is unaffected by these effects, allowing for better sensitivities. In Baeza-Ballesteros et al. (Eur Phys J C 82:154, 2022), the impact of other subleading backgrounds that may induce orbit precession, such as, e.g., the electrical Casimir force or general relativity, was studied in detail. It was found that the proposed setup could test Yukawa-like corrections, alpha x exp(-r/lambda), to the 1/r potential with couplings as low as alpha similar to 10(-2) for distances as small as lambda similar to 10 μm, improving by roughly an order of magnitude present bounds. In this paper, we start to move from a theoretical study of the proposal to a more realistic implementation of the experimental setup. As a first step, we study the impact of air viscosity on the proposed setup and see how the setup should be modified in order to preserve the theoretical sensitivity achieved in Donini and Marimon (2016) and Baeza-Ballesteros et al. (2022).  
  Address [Baeza-Ballesteros, J.; Donini, A.] Univ Valencia, Inst Fis Corpuscular, CSIC, Calle Catedrat Jose Beltran Martinez 2, Paterna 46980, Spain, Email: jorge.baeza@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001243830900015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6156  
Permanent link to this record
 

 
Author Bennett, J.J.; Buldgen, G.; de Salas, P.F.; Drewes, M.; Gariazzo, S.; Pastor, S.; Wong, Y.Y.Y. url  doi
openurl 
  Title (down) Towards a precision calculation of the effective number of neutrinos N-eff in the Standard Model. Part II. Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 073 - 33pp  
  Keywords cosmological neutrinos; neutrino properties; particle physics – cosmology connection; physics of the early universe  
  Abstract We present in this work a new calculation of the standard-model benchmark value for the effective number of neutrinos, N-eff(SM), that quantifies the cosmological neutrinoto-photon energy densities. The calculation takes into account neutrino flavour oscillations, finite-temperature effects in the quantum electrodynamics plasma to O(e(3)), where e is the elementary electric charge, and a full evaluation of the neutrino-neutrino collision integral. We provide furthermore a detailed assessment of the uncertainties in the benchmark N(eff)(SM )value, through testing the value's dependence on (i) optional approximate modelling of the weak collision integrals, (ii) measurement errors in the physical parameters of the weak sector, and (iii) numerical convergence, particularly in relation to momentum discretisation. Our new, recommended standard-model benchmark is N-eff(SM) 3.0440 +/- 0.0002, where the nominal uncertainty is attributed predominantly to errors incurred in the numerical solution procedure (vertical bar delta N-eff vertical bar similar to 10(-4)), augmented by measurement errors in the solar mixing angle sin(2) theta(12) (vertical bar delta N-eff vertical bar similar to 10(-4)).  
  Address [Bennett, Jack J.; Wong, Yvonne Y. Y.] Univ New South Wales, Sch Phys, Sydney Consortium Particle Phys & Cosmol, Sydney, NSW 2052, Australia, Email: j.j.bennett@unsw.edu.au;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000647827600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4827  
Permanent link to this record
 

 
Author Du, M.L.; Albaladejo, M.; Fernandez-Soler, P.; Guo, F.K.; Hanhart, C.; Meissner, U.G.; Nieves, J.; Yao, D.L. url  doi
openurl 
  Title (down) Towards a new paradigm for heavy-light meson spectroscopy Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 9 Pages 094018 - 8pp  
  Keywords  
  Abstract Since 2003 many new hadrons, including the lowest-lying positive-parity charm-strange mesons D*(s0) (2317) and D-s1 (2460), have been observed that do not conform with quark-model expectations. It was recently demonstrated that various puzzles in the charm-meson spectrum find a natural resolution if the SU(3) multiplets for the lightest scalar and axial-vector states, among them the D*(s0) (2317) and the D-s1 (2460), owe their existence to the nonperturbative dynamics of Goldstone-boson scattering off D-(s) and D*((s)) mesons. Most importantly the ordering of the lightest strange and nonstrange scalars becomes natural. We demonstrate for the first time that this mechanism is strongly supported by the recent high quality data on the B- -> D+ pi(-)pi(-) provided by the LHCb experiment. This implies that the lowest quark-model positive-parity charm mesons, together with their bottom counterparts, if realized in nature, do not form the ground-state multiplet. This is similar to the pattern that has been established for the scalar mesons made from light up, down, and strange quarks, where the lowest multiplet is considered to be made of states not described by the quark model. In a broader view, the hadron spectrum must be viewed as more than a collection of quark-model states.  
  Address [Du, Meng-Lin; Meissner, Ulf-G.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: fkguo@itp.ac.cn  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000451000200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3817  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva