toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bennett, J.J.; Buldgen, G.; de Salas, P.F.; Drewes, M.; Gariazzo, S.; Pastor, S.; Wong, Y.Y.Y. url  doi
openurl 
  Title (up) Towards a precision calculation of the effective number of neutrinos N-eff in the Standard Model. Part II. Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 073 - 33pp  
  Keywords cosmological neutrinos; neutrino properties; particle physics – cosmology connection; physics of the early universe  
  Abstract We present in this work a new calculation of the standard-model benchmark value for the effective number of neutrinos, N-eff(SM), that quantifies the cosmological neutrinoto-photon energy densities. The calculation takes into account neutrino flavour oscillations, finite-temperature effects in the quantum electrodynamics plasma to O(e(3)), where e is the elementary electric charge, and a full evaluation of the neutrino-neutrino collision integral. We provide furthermore a detailed assessment of the uncertainties in the benchmark N(eff)(SM )value, through testing the value's dependence on (i) optional approximate modelling of the weak collision integrals, (ii) measurement errors in the physical parameters of the weak sector, and (iii) numerical convergence, particularly in relation to momentum discretisation. Our new, recommended standard-model benchmark is N-eff(SM) 3.0440 +/- 0.0002, where the nominal uncertainty is attributed predominantly to errors incurred in the numerical solution procedure (vertical bar delta N-eff vertical bar similar to 10(-4)), augmented by measurement errors in the solar mixing angle sin(2) theta(12) (vertical bar delta N-eff vertical bar similar to 10(-4)).  
  Address [Bennett, Jack J.; Wong, Yvonne Y. Y.] Univ New South Wales, Sch Phys, Sydney Consortium Particle Phys & Cosmol, Sydney, NSW 2052, Australia, Email: j.j.bennett@unsw.edu.au;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000647827600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4827  
Permanent link to this record
 

 
Author Arguelles, C.A.; Palomares-Ruiz, S.; Schneider, A.; Wille, L.; Yuan, T.L. url  doi
openurl 
  Title (up) Unified atmospheric neutrino passing fractions for large-scale neutrino telescopes Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 047 - 41pp  
  Keywords neutrino detectors; neutrino experiments; ultra high energy photons and neutrinos  
  Abstract The atmospheric neutrino passing fraction, or self-veto, is defined as the probability for an atmospheric neutrino not to be accompanied by a detectable muon from the same cosmic-ray air shower. Building upon previous work, we propose a redefinition of the passing fractions by unifying the treatment for muon and electron neutrinos. Several approximations have also been removed. This enables performing detailed estimations of the uncertainties in the passing fractions from several inputs: muon losses, cosmic-ray spectrum, hadronic-interaction models and atmosphere-density profiles. We also study the passing fractions under variations of the detector configuration: depth, surrounding medium and muon veto trigger probability. The calculation exhibits excellent agreement with passing fractions obtained from Monte Carlo simulations. Finally, we provide a general software framework to implement this veto technique for all large-scale neutrino observatories.  
  Address [Arguelle, Carlos A.] MIT, Dept Phys, Cambridge, MA 02139 USA, Email: caad@mit.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000439590200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3677  
Permanent link to this record
 

 
Author Gelmini, G.B.; Huh, J.H.; Witte, S.J. url  doi
openurl 
  Title (up) Unified halo-independent formalism from convex hulls for direct dark matter searches Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 12 Issue 12 Pages 039 - 33pp  
  Keywords dark matter experiments; dark matter theory  
  Abstract Using the Fenchel-Eggleston theorem for convex hulls (an extension of the Caratheodory theorem), we prove that any likelihood can be maximized by either a dark matter 1-speed distribution F(v) in Earth's frame or 2-Galactic velocity distribution f(gal) ((u) over right arrow), consisting of a sum of delta functions. The former case applies only to time-averaged rate measurements and the maximum number of delta functions is (N-1), where N is the total number of data entries. The second case applies to any harmonic expansion coefficient of the time-dependent rate and the maximum number of terms is N. Using time-averaged rates, the aforementioned form of F(v) results in a piecewise constant unmodulated halo function (eta) over tilde (BF)-B-0 (v(min)) (which is an integral of the speed distribution) with at most (N-1) downward steps. The authors had previously proven this result for likelihoods comprised of at least one extended likelihood, and found the best-fit halo function to be unique. This uniqueness, however, cannot be guaranteed in the more general analysis applied to arbitrary likelihoods. Thus we introduce a method for determining whether there exists a unique best-fit halo function, and provide a procedure for constructing either a pointwise con fi dence band, if the best-fit halo function is unique, or a degeneracy band, if it is not. Using measurements of modulation amplitudes, the aforementioned form of f(gal) ((u) over right arrow), which is a sum of Galactic streams, yields a periodic time-dependent halo function (eta) over right arrow BF (v(min); t) which at any fixed time is a piecewise constant function of v(min) with at most N downward steps. In this case, we explain how to construct pointwise confidence and degeneracy bands from the time-averaged halo function. Finally, we show that requiring an isotropic Galactic velocity distribution leads to a Galactic speed distribution F(u)that is once again a sum of delta functions, and produces a time-dependent (eta) over tilde BF (v(min); t) function (and a time-averaged (eta) over tilde (0) BF (v(min))) that is piecewise linear, di ff ering significantly from best-fit halo functions obtained without the assumption of isotropy.  
  Address [Gelmini, Graciela B.; Witte, Samuel J.] Univ Calif Los Angeles, Dept Phys & Astron, 475 Portola Plaza, Los Angeles, CA 90095 USA, Email: gelmini@physics.ucla.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000418922000002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3440  
Permanent link to this record
 

 
Author Di Bari, P.; Ludl, P.O.; Palomares-Ruiz, S. url  doi
openurl 
  Title (up) Unifying leptogenesis, dark matter and high-energy neutrinos with right-handed neutrino mixing via Higgs portal Type Journal Article
  Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 044 - 41pp  
  Keywords dark matter theory; leptogenesis; physics of the early universe; ultra high energy photons and neutrinos  
  Abstract We revisit a model in which neutrino masses and mixing are described by a two right-handed (RH) neutrino seesaw scenario, implying a strictly hierarchical light neutrino spectrum. A third decoupled RH neutrino, N-DM with mass M-DM, plays the role of cold dark matter (DM) and is produced by the mixing with a source RH neutrino, Ns with mass M-S, induced by Higgs portal interactions. The same interactions are also responsible for N-DM decays. We discuss in detail the constraints coming from DM abundance and stability conditions showing that in the hierarchical case, for M-DM >> M-S, there is an allowed window on M-DM values necessarily implying a contribution, from DM decays, to the high-energy neutrino flux recently detected by IceCube. We also show how the model can explain the matter-antimatter asymmetry of the Universe via leptogenesis in the quasi-degenerate limit. In this case, the DM mass should be within the range 300 GeV less than or similar to M-S < M-DM < 10PeV. We discuss the specific properties of this high-energy neutrino flux and show the predicted event spectrum for two exemplary cases. Although DM decays, with a relatively hard spectrum, cannot account for all the IceCube high-energy data, we illustrate how this extra source of high-energy neutrinos could reasonably explain some potential features in the observed spectrum. In this way, this represents a unified scenario for leptogenesis and DM that could be tested during the next years with more high-energy neutrino events.  
  Address [Di Bari, Pasquale; Ludl, Patrick Otto] Univ Southampton, Phys & Astron, Southampton SO17 1BJ, Hants, England, Email: P.Di-Bari@soton.ac.uk;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000397734100044 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3020  
Permanent link to this record
 

 
Author Bhattacharya, A.; Esmaili, A.; Palomares-Ruiz, S.; Sarcevic, I. url  doi
openurl 
  Title (up) Update on decaying and annihilating heavy dark matter with the 6-year IceCube HESE data Type Journal Article
  Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 5 Pages 051 - 30pp  
  Keywords dark matter theory; ultra high energy photons and neutrinos  
  Abstract In view of the IceCube's 6-year high-energy starting events (HESE) sample, we revisit the possibility that the updated data may be better explained by a combination of neutrino fluxes from dark matter decay and an isotropic astrophysical power-law than purely by the latter. We find that the combined two-component flux qualitatively improves the fit to the observed data over a purely astrophysical one, and discuss how these updated fits compare against a similar analysis done with the 4-year HESE data. We also update fits involving dark matter decay via multiple channels, without any contribution from the astrophysical flux. We find that a DM-only explanation is not excluded by neutrino data alone. Finally, we also consider the possibility of a signal from dark matter annihilations and perform analogous analyses to the case of decays, commenting on its implications.  
  Address [Bhattacharya, Atri] Univ Liege, Space Sci Technol & Astrophys Res STAR Inst, Bat B5a, B-4000 Liege, Belgium, Email: a.bhattacharya@ulg.ac.be;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000469808500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4038  
Permanent link to this record
 

 
Author Escudero, M.; Hooper, D.; Witte, S.J. url  doi
openurl 
  Title (up) Updated collider and direct detection constraints on Dark Matter models for the Galactic Center gamma-ray excess Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 02 Issue 2 Pages 038 - 21pp  
  Keywords dark matter experiments; dark matter theory  
  Abstract Utilizing an exhaustive set of simplified models, we revisit dark matter scenarios potentially capable of generating the observed Galactic Center gamma-ray excess, updating constraints from the LUX and PandaX- II experiments, as well as from the LHC and other colliders. We identify a variety of pseudoscalar mediated models that remain consistent with all constraints. In contrast, dark matter candidates which annihilate through a spin-1 mediator are ruled out by direct detection constraints unless the mass of the mediator is near an annihilation resonance, or the mediator has a purely vector coupling to the dark matter and a purely axial coupling to Standard Model fermions. All scenarios in which the dark matter annihilates throught-channel processes are now ruled out by a combination of the constraints from LUX/ PandaX-II and the LHC.  
  Address [Escudero, Miguel] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: miguel.escudero@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399455000038 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3079  
Permanent link to this record
 

 
Author Strege, C.; Bertone, G.; Cerdeño, D.G.; Fornasa, M.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title (up) Updated global fits of the cMSSM including the latest LHC SUSY and Higgs searches and XENON100 data Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 030 - 22pp  
  Keywords dark matter theory; dark matter experiments  
  Abstract We present new global fits of the constrained Minimal Supersymmetric Standard Model (cMSSM), including LHC 1/fb integrated luminosity SUSY exclusion limits, recent LHC 5/fb constraints on the mass of the Higgs boson and XENON100 direct detection data. Our analysis fully takes into account astrophysical and hadronic uncertainties that enter the analysis when translating direct detection limits into constraints on the cMSSM parameter space. We provide results for both a Bayesian and a Frequentist statistical analysis. We find that LHC 2011 constraints in combination with XENON100 data can rule out a significant portion of the cMSSM parameter space. Our results further emphasise the complementarity of collider experiments and direct detection searches in constraining extensions of Standard Model physics. The LHC 2011 exclusion limit strongly impacts on low-mass regions of cMSSM parameter space, such as the stau co-annihilation region, while direct detection data can rule out regions of high SUSY masses, such as the Focus-Point region, which is unreachable for the LHC in the near future. We show that, in addition to XENON100 data, the experimental constraint on the anomalous magnetic moment of the muon plays a dominant role in disfavouring large scalar and gaugino masses. We find that, should the LHC 2011 excess hinting towards a Higgs boson at 126 GeV be confirmed, currently favoured regions of the cMSSM parameter space will be robustly ruled out from both a Bayesian and a profile likelihood statistical perspective.  
  Address [Strege, C.; Trotta, R.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England, Email: charlotte.strege09@imperial.ac.uk;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000302949600030 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1001  
Permanent link to this record
 

 
Author Lopez-Honorez, L.; Mena, O.; Palomares-Ruiz, S.; Villanueva-Domingo, P.; Witte, S.J. url  doi
openurl 
  Title (up) Variations in fundamental constants at the cosmic dawn Type Journal Article
  Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 026 - 25pp  
  Keywords cosmology of theories beyond the SM; particle physics – cosmology connection; reionization  
  Abstract The observation of space-time variations in fundamental constants would provide strong evidence for the existence of new light degrees of freedom in the theory of Nature. Robustly constraining such scenarios requires exploiting observations that span different scales and probe the state of the Universe at different epochs. In the context of cosmology, both the cosmic microwave background and the Lyman-a forest have proven to be powerful tools capable of constraining variations in electromagnetism, however at the moment there do not exist cosmological probes capable of bridging the gap between recombination and reionization. In the near future, radio telescopes will attempt to measure the 21 cm transition of neutral hydrogen during the epochs of reionization and the cosmic dawn (and potentially the tail end of the dark ages); being inherently sensitive to electromagnetic phenomena, these experiments will offer a unique perspective on space-time variations of the fine-structure constant and the electron mass. We show here that large variations in these fundamental constants would produce features on the 21 cm power spectrum that may be distinguishable from astrophysical uncertainties. Furthermore, we forecast the sensitivity for the Square Kilometer Array, and show that the 21 cm power spectrum may be able to constrain variations at the level of O(10(-3)).  
  Address [Lopez-Honorez, Laura] Univ Libre Bruxelles, Serv Phys Theor, CP225, B-1050 Brussels, Belgium, Email: llopezho@ulb.ac.be;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000551875400049 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4473  
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Gariazzo, S.; Gnedin, N.Y.; Mena, O. url  doi
openurl 
  Title (up) Was there an early reionization component in our universe? Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 024 - 17pp  
  Keywords cosmological parameters from CMBR; reionization  
  Abstract A deep understanding of the epoch of reionization is still missing in our knowledge of the universe. While future probes will allow us to test the precise evolution of the free electron fraction from redshifts between z similar or equal to 6 and z similar or equal to 20, at present one could ask what kind of reionization processes are allowed by present cosmic microwave background temperature and polarization measurements. An early contribution to reionization could imply a departure from the standard picture where star formation determines the reionization onset. By considering a broad class of possible reionization parameterizations, we find that current data do not require an early reionization component in our universe and that only one marginal class of models, based on a particular realization of reionization, may point to that. In addition, the frequentist Akaike information criterion (AIC) provides strong evidence against alternative reionization histories, favoring the most simple reionization scenario, which describes reionization by means of only one (constant) reionization optical depth tau.  
  Address [Villanueva-Domingo, Pablo; Gariazzo, Stefano; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: pablo.villanueva@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000429339200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3555  
Permanent link to this record
 

 
Author Das, S.; de Putter, R.; Linder, E.V.; Nakajima, R. url  doi
openurl 
  Title (up) Weak lensing cosmology beyond Lambda CDM Type Journal Article
  Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 23pp  
  Keywords dark energy experiments; cosmological parameters from LSS; weak gravitational lensing; dark energy theory  
  Abstract Weak gravitational lensing is one of the key probes of the cosmological model, dark energy, and dark matter, providing insight into both the cosmic expansion history and large scale structure growth history. Taking into account a broad spectrum of physics affecting growth – dynamical dark energy, extended gravity, neutrino masses, and spatial curvature – we analyze the cosmological constraints. Similarly we consider the effects of a range of systematic uncertainties, in shear measurement, photometric redshifts, intrinsic alignments, and the nonlinear power spectrum, on cosmological parameter extraction. We also investigate, and provide fitting formulas tor, the influence of survey parameters such as redshift depth, galaxy number densities, and sky area on the cosmological constraints in the beyond-ACDM parameter space. Finally, we examine the robustness of results for different fiducial cosmologies.  
  Address [Das, Sudeep; Linder, Eric V.; Nakajima, Reiko] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA, Email: sdas@hep.anl.gov;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000310833100011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1228  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva