toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Celis, A.; Ilisie, V.; Pich, A. url  doi
openurl 
  Title (down) Towards a general analysis of LHC data within two-Higgs-doublet models Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 095 - 32pp  
  Keywords Higgs Physics; Beyond Standard Model  
  Abstract The data accumulated so far confirm the Higgs-like nature of the new boson discovered at the LHC. The Standard Model Higgs hypothesis is compatible with the collider results and no significant deviations from the Standard Model have been observed neither in the flavour sector nor in electroweak precision observables. We update the LHC and Tevatron constraints on CP-conserving two-Higgs-doublet models without tree-level flavour-changing neutral currents. While the relative sign between the top Yukawa and the gauge coupling of the 126 GeV Higgs is found be the same as in the SM, at 90% CL, there is a sign degeneracy in the determination of its bottom and tau Yukawa couplings. This results in several disjoint allowed regions in the parameter space. We show how generic sum rules governing the scalar couplings determine the properties of the additional Higgs bosons in the different allowed regions. The role of electroweak precision observables, low-energy flavour constraints and LHC searches for additional scalars to further restrict the available parameter space is also discussed.  
  Address [Celis, Alejandro; Ilisie, Victor; Pich, Antonio] Univ Valencia, CSIC, IFIC, Dept Fis Teor, E-46071 Valencia, Spain, Email: alejandro.celis@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000328891400001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1664  
Permanent link to this record
 

 
Author CLICdp Collaboration (Abramowicz, H. et al.); Boronat, M.; Fullana, E.; Fuster, J.; Garcia, I.; Gomis Lopez, P.; Perello, M.; Ros, E.; Vos, M. url  doi
openurl 
  Title (down) Top-quark physics at the CLIC electron-positron linear collider Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 003 - 88pp  
  Keywords e plus -e- Experiments; Top physics  
  Abstract The Compact Linear Collider (CLIC) is a proposed future high-luminosity linear electron-positron collider operating at three energy stages, with nominal centre-of-mass energies root s = 380 GeV, 1.5 TeV, and 3 TeV. Its aim is to explore the energy frontier, providing sensitivity to physics beyond the Standard Model (BSM) and precision measurements of Standard Model processes with an emphasis on Higgs boson and top-quark physics. The opportunities for top-quark physics at CLIC are discussed in this paper. The initial stage of operation focuses on top-quark pair production measurements, as well as the search for rare flavour-changing neutral current (FCNC) top-quark decays. It also includes a top-quark pair production threshold scan around 350 GeV which provides a precise measurement of the top-quark mass in a well-defined theoretical framework. At the higher-energy stages, studies are made of top-quark pairs produced in association with other particles. A study of ttH production including the extraction of the top Yukawa coupling is presented as well as a study of vector boson fusion (VBF) production, which gives direct access to high-energy electroweak interactions. Operation above 1 TeV leads to more highly collimated jet environments where dedicated methods are used to analyse the jet constituents. These techniques enable studies of the top-quark pair production, and hence the sensitivity to BSM physics, to be extended to higher energies. This paper also includes phenomenological interpretations that may be performed using the results from the extensive top-quark physics programme at CLIC.  
  Address [Abramowicz, H.; Benhammou, Y.; Borysov, O.; Joffe, A.; Levy, A.; Levy, I.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000497709600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4203  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Lacuesta, V.R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V.A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title (down) Top-quark mass measurement in the all-hadronic t(t)over-bar decay channel at root s=8 TeV with the ATLAS detector Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 118 - 41pp  
  Keywords Hadron-Hadron scattering (experiments); Top physics  
  Abstract The top-quark mass is measured in the all-hadronic top-antitop quark decay channel using proton-proton collisions at a centre-of-mass energy of root s = 8 TeV with the ATLAS detector at the CERN Large Hadron Collider. The data set used in the analysis corresponds to an integrated luminosity of 20.2 fb(-1). The large multi-jet background is modelled using a data-driven method. The top-quark mass is obtained from template fits to the ratio of the three-jet to the dijet mass. The three-jet mass is obtained from the three jets assigned to the top quark decay. From these three jets the dijet mass is obtained using the two jets assigned to the W boson decay. The top-quark mass is measured to be 173.72 +/- 0.55 (stat.) +/- 1.01 (syst.) GeV.  
  Address [Jackson, P.; Lee, L.; Petridis, A.; Whitel, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000412016600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3343  
Permanent link to this record
 

 
Author Ellis, J.; Madigan, M.; Mimasu, K.; Sanz, V.; You, T. url  doi
openurl 
  Title (down) Top, Higgs, diboson and electroweak fit to the Standard Model effective field theory Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 279 - 78pp  
  Keywords Effective Field Theories; Beyond Standard Model; Higgs Physics  
  Abstract The search for effective field theory deformations of the Standard Model (SM) is a major goal of particle physics that can benefit from a global approach in the framework of the Standard Model Effective Field Theory (SMEFT). For the first time, we include LHC data on top production and differential distributions together with Higgs production and decay rates and Simplified Template Cross-Section (STXS) measurements in a global fit, as well as precision electroweak and diboson measurements from LEP and the LHC, in a global analysis with SMEFT operators of dimension 6 included linearly. We present the constraints on the coefficients of these operators, both individually and when marginalised, in flavour-universal and top-specific scenarios, studying the interplay of these datasets and the correlations they induce in the SMEFT. We then explore the constraints that our linear SMEFT analysis imposes on specific ultra-violet completions of the Standard Model, including those with single additional fields and low-mass stop squarks. We also present a model-independent search for deformations of the SM that contribute to between two and five SMEFT operator coefficients. In no case do we find any significant evidence for physics beyond the SM. Our underlying Fitmaker public code provides a framework for future generalisations of our analysis, including a quadratic treatment of dimension-6 operators.  
  Address [Ellis, John; Mimasu, Ken] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: john.ellis@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000658918100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4857  
Permanent link to this record
 

 
Author Bernabeu, J.; Martinez-Vidal, F.; Villanueva-Perez, P. url  doi
openurl 
  Title (down) Time reversal violation from the entangled B-0(B)over-bar(0) system Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 064 - 18pp  
  Keywords Discrete and Finite Symmetries; B-Physics; CP violation  
  Abstract We discuss the concepts and methodology to implement an experiment probing directly Time Reversal (T) non-invariance, without any experimental connection to CP violation, by the exchange of in and out states. The idea relies on the B-0(B) over bar (0)) entanglement and decay time information available at B factories. The flavor or CP tag of the state of the still living neutral meson by the first decay of its orthogonal partner overcomes the problem of irreversibility for unstable systems, which prevents direct tests of T with incoherent particle states. T violation in the time evolution between the two decays means experimentally a difference between the rates for the time-ordered (l+X, J/psi K-s) and (J/psi K-L, l(-)X) decays, and three other independent asymmetries. The proposed strategy has been applied to simulated data samples of similar size and features to those currently available, from which we estimate the significance of the expected discovery to reach many standard deviations.  
  Address [Bernabeu, J.] Univ Valencia, Dept Theoret Phys, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000309883600021 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1215  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva