toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Haider, H.; Ruiz Simo, I.; Sajjad Athar, M.; Vicente Vacas, M.J. url  doi
openurl 
  Title (up) Nuclear medium effects in nu(nu)-nucleus deep inelastic scattering Type Journal Article
  Year 2011 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 84 Issue 5 Pages 054610 - 13pp  
  Keywords  
  Abstract We study nuclear medium effects in the weak structure functions F(2)(x, Q(2)) and F(3)(x, Q(2)) in the deep inelastic neutrino and antineutrino induced reactions in nuclei. We use a theoretical model for the nuclear spectral functions which incorporates the conventional nuclear effects, such as Fermi motion, binding, and nucleon correlations. We also consider the pion and rho meson cloud contributions calculated from a microscopic model for meson-nucleus self-energies. The calculations have been performed using relativistic nuclear spectral functions. Our results are compared with the experimental data of the NuTeV and the CERN Dortmund Heidelberg Saclay Warsaw (CDHSW) collaborations.  
  Address [Haider, H; Athar, MS] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India, Email: sajathar@gmail.com  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000297121900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 809  
Permanent link to this record
 

 
Author Sajjad Athar, M.; Ruiz Simo, I.; Vicente Vacas, M.J. url  doi
openurl 
  Title (up) Nuclear medium modification of the F2(x, Q^2) structure function Type Journal Article
  Year 2011 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A  
  Volume 857 Issue 1 Pages 29-41  
  Keywords Structure function; Nuclear medium effects; Deep inelastic scattering; Local density approximation  
  Abstract We study the nuclear effects in the electromagnetic structure function F-2(x, Q(2)) in the deep inelastic lepton nucleus scattering process by taking into account Fermi motion, binding, pion and rho meson cloud contributions. Calculations have been done in a local density approximation using relativistic nuclear spectral functions which include nucleon correlations. The ratios R-F2(A) (x, Q(2)) = 2F(2)(A)(x, Q(2))/AF(2)(D)(x, Q(2)) are obtained and compared with recent JLab results for light nuclei with special attention to the slope of the x distributions. This magnitude shows a non-trivial A dependence and it is insensitive to possible normalization uncertainties. The results have also been compared with some of the older experiments using intermediate mass nuclei.  
  Address [Athar, M. Sajjad] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India, Email: sajathar@gmail.com  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9474 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290607500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 627  
Permanent link to this record
 

 
Author Alvarez-Ruso, L.; Ledwig, T.; Martin Camalich, J.; Vicente Vacas, M.J. url  doi
openurl 
  Title (up) Nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD data Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 88 Issue 5 Pages 054507 - 20pp  
  Keywords  
  Abstract The pion mass dependence of the nucleon mass within the covariant SU(2) baryon chiral perturbation theory both without and with explicit Delta(1232) degrees of freedom up to order p(4) is investigated. By fitting to a comprehensive set of lattice QCD data in 2 and 2 + 1 flavors from several collaborations, for pion masses M-pi < 420 MeV, we obtain low energy constants of natural size that are compatible with pion-nucleon scattering data. Our results are consistent with the rather linear pion mass dependence showed by lattice QCD. In the 2 flavor case we have also performed simultaneous fits to nucleon mass and sigma(pi N) data. As a result of our analysis, which encompasses the study of finite volume corrections and discretization effects, we report a value of sigma(pi N) = 41(5)(4) MeV in the 2 flavor case and sigma(pi N) = 52(3)(8) MeV for 2 + 1 flavors, where the inclusion of the Delta(1232) resonance changes the results by around 9 MeV. In the 2 flavor case we are able to set independently the scale for lattice QCD data, given by a Sommer scale of r(0) = 0.493(23) fm.  
  Address [Alvarez-Ruso, L.] Univ Valencia, Ctr Mixto, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: alvarez@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000324636100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1603  
Permanent link to this record
 

 
Author Ledwig, T.; Martin Camalich, J.; Geng, L.S.; Vicente Vacas, M.J. url  doi
openurl 
  Title (up) Octet-baryon axial-vector charges and SU(3)-breaking effects in the semileptonic hyperon decays Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue 5 Pages 054502 - 16pp  
  Keywords  
  Abstract The octet-baryon axial-vector charges and the g(1)/f(1) ratios measured in the semileptonic hyperon decays are studied up to O(p(3)) using the covariant baryon chiral perturbation theory with explicit decuplet contributions. We clarify the role of different low-energy constants and find a good convergence for the chiral expansion of the axial-vector charges of the baryon octet, g(1)(0), with O(p(3)) corrections typically around 20% of the leading ones. This is a consequence of strong cancellations between different next-to-leading- order terms. We show that considering only nonanalytic terms is not enough and that analytic terms appearing at the same chiral order play an important role in this description. The same effects still hold for the chiral extrapolation of the axial-vector charges and result in a rather mild quark-mass dependence. As a result, we report a determination of the leading-order chiral couplings, D = 0.623(61)(17) and F = 0.441(47)(2), as obtained from a completely consistent chiral analysis up to O(p(3)). Furthermore, we note that the appearance of an unknown low-energy constant precludes the extraction of the proton octet charge from semileptonic decay data alone, which is relevant for an analysis of the composition of the proton spin.  
  Address [Ledwig, T.; Vicente Vacas, M. J.] Univ Valencia, CSIC, Inst Invest Paterna, Dept Fis Teor, Paterna 46980, Spain, Email: ledwig@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341264600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1899  
Permanent link to this record
 

 
Author Alarcon, J.M.; Hiller Blin, A.N.; Vicente Vacas, M.J.; Weiss, C. url  doi
openurl 
  Title (up) Peripheral transverse densities of the baryon octet from chiral effective field theory and dispersion analysis Type Journal Article
  Year 2017 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A  
  Volume 964 Issue Pages 18-54  
  Keywords Electromagnetic form factors; Chiral lagrangians; Dispersion relations; Hyperons; Charge distribution  
  Abstract The baryon electromagnetic form factors are expressed in terms of two-dimensional densities describing the distribution of charge and magnetization in transverse space at fixed light-front time. We calculate the transverse densities of the spin-1/2 flavor-octet baryons at peripheral distances b = O(M-pi(-1)) using methods of relativistic chiral effective field theory (chi EFT) and dispersion analysis. The densities are represented as dispersive integrals over the imaginary parts of the form factors in the timelike region (spectral functions). The isovector spectral functions on the two-pion cut t > 4 M-pi(2) are calculated using relativistic chi EFT including octet and decuplet baryons. The chi EFT calculations are extended into the rho meson mass region using an N / D method that incorporates the pion electromagnetic form factor data. The isoscalar spectral functions are modeled by vector meson poles. We compute the peripheral charge and magnetization densities in the octet baryon states, estimate the uncertainties, and determine the quark flavor decomposition. The approach can be extended to baryon form factors of other operators and the moments of generalized parton distributions.  
  Address [Alarcon, J. M.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: alarcon@jlab.org  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9474 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000404199900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3188  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva