toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Driencourt-Mangin, F.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J. url  doi
openurl 
  Title (up) Interplay between the loop-tree duality and helicity amplitudes Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 1 Pages 016012 - 13pp  
  Keywords  
  Abstract The spinor-helicity formalism has proven to be very efficient in the calculation of scattering amplitudes in quantum field theory, while the loop-tree duality (LTD) representation of multiloop integrals exhibits appealing and interesting advantages with respect to other approaches. In view of the most recent developments in LTD, we exploit the synergies with the spinor-helicity formalism to analyze illustrative one- and two-loop scattering processes. We focus our discussion on the local UV renormalization of IR and UV finite helicity amplitudes and present a fully automated numerical implementation that provides efficient expressions, which are integrable directly in four space-time dimensions.  
  Address [Driencourt-Mangin, F.; Rodrigo, G.; Sborlini, G. F. R.; Torres Bobadilla, W. J.] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, Parc Cientif, E-46980 Valencia, Spain, Email: felix.dm@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000748867800009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5100  
Permanent link to this record
 

 
Author Aparisi, J.; Fuster, J.; Irles, A.; Rodrigo, G.; Vos, M.; Yamamoto, H.; Hoang, A.; Lepenik, C.; Spira, M.; Tairafune, S.; Yonamine, R. url  doi
openurl 
  Title (up) m(b) at m(H): The Running Bottom Quark Mass and the Higgs Boson Type Journal Article
  Year 2022 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 128 Issue 12 Pages 122001 - 7pp  
  Keywords  
  Abstract We present a new measurement of the bottom quark mass in the MS scheme at the renormalization scale of the Higgs boson mass from measurements of Higgs boson decay rates at the LHC: -0.31 GeV. The measurement has a negligible theory uncertainty and excellent prospects to improve at the HL-LHC and a future Higgs factory. Confronting this result and mb(mb) from low-energy measurements and mb(mZ) from Z-pole data, with the prediction of the scale evolution of the renormalization group equations, we find strong evidence for the “running” of the bottom quark mass.  
  Address [Aparisi, Javier; Fuster, Juan; Irles, Adrian; Rodrigo, German; Vos, Marcel; Yamamoto, Hitoshi] Univ Valencia, Inst Fis Corpuscular, CSIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: marcel.vos@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000782852800005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5200  
Permanent link to this record
 

 
Author Aguilera-Verdugo, J.J.; Hernandez-Pinto, R.J.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J. url  doi
openurl 
  Title (up) Mathematical properties of nested residues and their application to multi-loop scattering amplitudes Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 112 - 42pp  
  Keywords NLO Computations; QCD Phenomenology  
  Abstract The computation of multi-loop multi-leg scattering amplitudes plays a key role to improve the precision of theoretical predictions for particle physics at high-energy colliders. In this work, we focus on the mathematical properties of the novel integrand-level representation of Feynman integrals, which is based on the Loop-Tree Duality (LTD). We explore the behaviour of the multi-loop iterated residues and explicitly show, by developing a general compact and elegant proof, that contributions associated to displaced poles are cancelled out. The remaining residues, called nested residues as originally introduced in ref. [1], encode the relevant physical information and are naturally mapped onto physical configurations associated to nondisjoint on-shell states. By going further on the mathematical structure of the nested residues, we prove that unphysical singularities vanish, and show how the final expressions can be written by using only causal denominators. In this way, we provide a mathematical proof for the all-loop formulae presented in ref. [2].  
  Address [Jesus Aguilera-Verdugo, J.; Rodrigo, German; Sborlini, German F. R.; Torres Bobadilla, William J.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient, E-46980 Valencia, Spain, Email: jesus.aguilera@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000620526300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4726  
Permanent link to this record
 

 
Author Torres Bobadilla, W.J. et al; Driencourt-Mangin, F.; Rodrigo, G. url  doi
openurl 
  Title (up) May the four be with you: novel IR-subtraction methods to tackle NNLO calculations Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 3 Pages 250 - 61pp  
  Keywords  
  Abstract In this manuscript, we report the outcome of the topical workshop: paving the way to alternative NNLO strategies (https://indico.ific.uv.es/e/WorkStop-ThinkStart_3.0), by presenting a discussion about different frameworks to perform precise higher-order computations for high-energy physics. These approaches implement novel strategies to deal with infrared and ultraviolet singularities in quantum field theories. A special emphasis is devoted to the local cancellation of these singularities, which can enhance the efficiency of computations and lead to discover novel mathematical properties in quantum field theories.  
  Address [Torres Bobadilla, W. J.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany, Email: torres@mpp.mpg.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000631882200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4788  
Permanent link to this record
 

 
Author Buchta, S.; Chachamis, G.; Draggiotis, P.; Rodrigo, G. url  doi
openurl 
  Title (up) Numerical implementation of the loop-tree duality method Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 5 Pages 274 - 15pp  
  Keywords  
  Abstract We present a first numerical implementation of the loop-tree duality (LTD) method for the direct numerical computation of multi-leg one-loop Feynman integrals. We discuss in detail the singular structure of the dual integrands and define a suitable contour deformation in the loop three-momentum space to carry out the numerical integration. Then we apply the LTD method to the computation of ultraviolet and infrared finite integrals, and we present explicit results for scalar and tensor integrals with up to eight external legs (octagons). The LTD method features an excellent performance independently of the number of external legs.  
  Address [Buchta, Sebastian; Rodrigo, German] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, Parc Cient, Valencia 46980, Spain, Email: sbuchta@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000400642800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3115  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva