|   | 
Details
   web
Records
Author Piriz, G.H.; Gonzalez-Sprinberg, G.A.; Ballester, F.; Vijande, J.
Title (up) Dosimetry of Large Field Valencia applicators for Cobalt-60-based brachytherapy Type Journal Article
Year 2024 Publication Medical Physics Abbreviated Journal Med. Phys.
Volume 51 Issue Pages 5094-5098
Keywords dosimetry; Monte Carlo; skin brachytherapy; Valencia applicators
Abstract BackgroundNon-melanoma skin cancer is one of the most common types of cancer and one of the main approaches is brachytherapy. For small lesions, the treatment of this cancer with brachytherapy can be done with two commercial applicators, one of these is the Large Field Valencia Applicators (LFVA).PurposeThe aim of this study is to test the capabilities of the LFVA to use clinically 60Co sources instead of the 192Ir ones. This study was designed for the same dwell positions and weights for both sources.MethodsThe Penelope Monte Carlo code was used to evaluate dose distribution in a water phantom when a 60Co source is considered. The LFVA design and the optimized dwell weights reported for the case of 192Ir are maintained with the only exception of the dwell weight of the central position, that was increased. 2D dose distributions, field flatness, symmetry and the leakage dose distribution around the applicator were calculated.ResultsWhen comparing the dose distributions of both sources, field flatness and symmetry remain unchanged. The only evident difference is an increase of the penumbra regions for all depths when using the 60Co source. Regarding leakage, the maximum dose within the air volume surrounding the applicator is in the order of 20% of the prescription dose for the 60Co source, but it decreases to less than 5% at about 1 cm distance.ConclusionsFlatness and symmetry remains unaltered as compared with 192Ir sources, while an increase in leakage has been observed. This proves the feasibility of using the LFVA in a larger range of clinical applications.
Address [Piriz, Gustavo H.; Gonzalez-Sprinberg, Gabriel A.] Univ Republica, Fac Sci, Med Phys Unit, Montevideo, Uruguay, Email: ghpiriz@gmail.com
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-2405 ISBN Medium
Area Expedition Conference
Notes WOS:001187737100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6011
Permanent link to this record
 

 
Author Granero, D.; Vijande, J.; Ballester, F.; Rivard, M.J.
Title (up) Dosimetry revisited for the HDR Ir-192 brachytherapy source model mHDR-v2 Type Journal Article
Year 2011 Publication Medical Physics Abbreviated Journal Med. Phys.
Volume 38 Issue 1 Pages 487-494
Keywords Ir-192; brachytherapy; dosimetry; TG-43; PSS model; MCNP5; PENELOPE2008; GEANT4
Abstract Purpose: Recently, the manufacturer of the HDR Ir-192 mHDR-v2 brachytherapy source reported small design changes (referred to herein as mHDR-v2r) that are within the manufacturing tolerances but may alter the existing dosimetric data for this source. This study aimed to (1) check whether these changes affect the existing dosimetric data published for this source; (2) obtain new dosimetric data in close proximity to the source, including the contributions from 192Ir electrons and considering the absence of electronic equilibrium; and (3) obtain scatter dose components for collapsed cone treatment planning system implementation. Methods: Three different Monte Carlo (MC) radiation transport codes were used: MCNP5, PENELOPE2008, and GEANT4. The source was centrally positioned in a 40 cm radius water phantom. Absorbed dose and collision kerma were obtained using 0.1 mm (0.5 mm) thick voxels to provide high-resolution dosimetry near (far from) the source. Dose-rate distributions obtained with the three MC codes were compared. Results: Simulations of mHDR-v2 and mHDR-v2r designs performed with three radiation transport codes showed agreement typically within 0.2% for r >= 0.25 cm. Dosimetric contributions from source electrons were significant for r<0.25 cm. The dose-rate constant and radial dose function were similar to those from previous MC studies of the mHDR-v2 design. The 2D anisotropy function also coincided with that of the mHDR-v2 design for r >= 0.25 cm. Detailed results of dose distributions and scatter components are presented for the modified source design. Conclusions: Comparison of these results to prior MC studies showed agreement typically within 0.5% for r >= 0.25 cm. If dosimetric data for r<0.25 cm are not needed, dosimetric results from the prior MC studies will be adequate. c 2011 American Association of Physicists in Medicine.
Address [Granero, Domingo] Hosp Gen Univ, Dept Radiat Phys, ERESA, E-46014 Valencia, Spain, Email: dgranero@eresa.com
Corporate Author Thesis
Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-2405 ISBN Medium
Area Expedition Conference
Notes ISI:000285769800050 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 557
Permanent link to this record
 

 
Author Assam, I.; Vijande, J.; Ballester, F.; Perez-Calatayud, J.; Poppe, B.; Siebert, F.A.
Title (up) Evaluation of dosimetric effects of metallic artifact reduction and tissue assignment on Monte Carlo dose calculations for I-125 prostate implants Type Journal Article
Year 2022 Publication Medical Physics Abbreviated Journal Med. Phys.
Volume 49 Issue Pages 6195-6208
Keywords metallic artifact reduction; Monte Carlo dosimetry; post-implant CT; prostate brachytherapy; tissue assignment schemes; voxelized virtual patient model
Abstract Purpose Monte Carlo (MC) simulation studies, aimed at evaluating the magnitude of tissue heterogeneity in I-125 prostate permanent seed implant brachytherapy (BT), customarily use clinical post-implant CT images to generate a virtual representation of a realistic patient model (virtual patient model). Metallic artifact reduction (MAR) techniques and tissue assignment schemes (TAS) are implemented on the post-implant CT images to mollify metallic artifacts due to BT seeds and to assign tissue types to the voxels corresponding to the bright seed spots and streaking artifacts, respectively. The objective of this study is to assess the combined influence of MAR and TAS on MC absorbed dose calculations in post-implant CT-based phantoms. The virtual patient models used for I-125 prostate implant MC absorbed dose calculations in this study are derived from the CT images of an external radiotherapy prostate patient without BT seeds and prostatic calcifications, thus averting the need to implement MAR and TAS. Methods The geometry of the IsoSeed I25.S17plus source is validated by comparing the MC calculated results of the TG-43 parameters for the line source approximation with the TG-43U1S2 consensus data. Four MC absorbed dose calculations are performed in two virtual patient models using the egs_brachy MC code: (1) TG-43-based D-w,w-TG(43), (2) D-w,D-w-MBDC that accounts for interseed scattering and attenuation (ISA), (3) D-m,D-m that examines ISA and tissue heterogeneity by scoring absorbed dose in tissue, and (4) D-w,D-m that unlike D-m,D-m scores absorbed dose in water. The MC absorbed doses (1) and (2) are simulated in a TG-43 patient phantom derived by assigning the densities of every voxel to 1.00 g cm(-3) (water), whereas MC absorbed doses (3) and (4) are scored in the TG-186 patient phantom generated by mapping the mass density of each voxel to tissue according to a CT calibration curve. The MC absorbed doses calculated in this study are compared with VariSeed v8.0 calculated absorbed doses. To evaluate the dosimetric effect of MAR and TAS, the MC absorbed doses of this work (independent of MAR and TAS) are compared to the MC absorbed doses of different I-125 source models from previous studies that were calculated with different MC codes using post-implant CT-based phantoms generated by implementing MAR and TAS on post-implant CT images. Results The very good agreement of TG-43 parameters of this study and the published consensus data within 3% validates the geometry of the IsoSeed I25.S17plus source. For the clinical studies, the TG-43-based calculations show a D-90 overestimation of more than 4% compared to the more realistic MC methods due to ISA and tissue composition. The results of this work generally show few discrepancies with the post-implant CT-based dosimetry studies with respect to the D-90 absorbed dose metric parameter. These discrepancies are mainly Type B uncertainties due to the different I-125 source models and MC codes. Conclusions The implementation of MAR and TAS on post-implant CT images have no dosimetric effect on the I-125 prostate MC absorbed dose calculation in post-implant CT-based phantoms.
Address [Assam, Isong; Siebert, Frank-Andre] UKSH, Clin Radiotherapy Radiooncol, Campus Kiel, Kiel, Germany, Email: Isong.Assam@uksh.de
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-2405 ISBN Medium
Area Expedition Conference
Notes WOS:000835807200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5321
Permanent link to this record
 

 
Author Palomo, R.; Pujades, M.C.; Gimeno-Olmos, J.; Carmona, V.; Lliso, F.; Candela-Juan, C.; Vijande, J.; Ballester, F.; Perez-Calatayud, J.
Title (up) Evaluation of lens absorbed dose with Cone Beam IGRT procedures Type Journal Article
Year 2015 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.
Volume 35 Issue 4 Pages N33-N41
Keywords IGRT; CBCT; lens absorbed dose; TLD
Abstract The purpose of this work is to evaluate the absorbed dose to the eye lenses due to the cone beam computed tomography (CBCT) system used to accurately position the patient during head-and-neck image guided procedures. The on-board imaging (OBI) systems (v. 1.5) of Clinac iX and TrueBeam (Varian) accelerators were used to evaluate the imparted dose to the eye lenses and some additional points of the head. All CBCT scans were acquired with the Standard-Dose Head protocol from Varian. Doses were measured using thermoluminescence dosimeters (TLDs) placed in an anthropomorphic phantom. TLDs were calibrated at the beam quality used to reduce their energy dependence. Average dose to the lens due to the OBI systems of the Clinac iX and the TrueBeam were 0.71 +/- 0.07 mGy/CBCT and 0.70 +/- 0.08 mGy/CBCT, respectively. The extra absorbed dose received by the eye lenses due to one CBCT acquisition with the studied protocol is far below the 500 mGy threshold established by ICRP for cataract formation (ICRP 2011 Statement on Tissue Reactions). However, the incremental effect of several CBCT acquisitions during the whole treatment should be taken into account.
Address [Palomo, R.; Gimeno-Olmos, J.; Carmona, V.; Lliso, F.; Candela-Juan, C.; Perez-Calatayud, J.] La Fe Univ, Dept Radiotherapy, Phys Sect, E-46026 Valencia, Spain, Email: mpuclau@gmail.com
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0952-4746 ISBN Medium
Area Expedition Conference
Notes WOS:000366388500002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2494
Permanent link to this record
 

 
Author Ibanez-Rosello, B.; Bautista-Ballesteros, J.A.; Candela-Juan, C.; Villaescusa, J.I.; Ballester, F.; Vijande, J.; Perez-Calatayud, J.
Title (up) Evaluation of the shielding in a treatment room with an electronic brachytherapy unit Type Journal Article
Year 2017 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.
Volume 37 Issue 2 Pages N5-N12
Keywords Esteya; electronic brachytherapy; shielding; radiation protection
Abstract Esteya (R) (Elekta Brachytherapy, Veenendaal, The Netherlands) is an electronic brachytherapy (eBT) system based on a 69.5 kVp x-ray source and a set of collimators of 1 to 3 cm in diameter, used for treating non-melanoma skin cancer lesions. This study aims to estimate room shielding requirements for this unit. The non-primary (scattered and leakage) ambient dose equivalent rates were measured with a Berthold LB-133 monitor (Berthold Technologies, Bad Wildbad, Germany). The latter ranges from 17 mSv h(-1) at 0.25 m distance from the x-ray source to 0.1 mSv h(-1) at 2.5 m. The necessary room shielding was then estimated following US and some European guidelines. The room shielding for all barriers considered was below 2 mmPb. The dose to a companion who, exceptionally, would stay with the patient during all treatment was estimated to be below 1 mSv if a leaded apron is used. In conclusion, Esteya shielding requirements are minimal.
Address [Ibanez-Rosello, Blanca; Ignacio Villaescusa, Juan] La Fe Univ, Radioprotect Dept, E-46026 Valencia, Spain, Email: blanca.ibanez.rosello@gmail.com
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0952-4746 ISBN Medium
Area Expedition Conference
Notes WOS:000413778600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3344
Permanent link to this record