Mohan, B., Gangwar, R., Pandit, T., Bera, M. L., Lewenstein, M., & Bera, M. N. (2025). Coherent heat transfer leads to genuine quantum enhancement in the performances of continuous engines. Phys. Rev. Appl., 23(4), 044050–25pp.
Abstract: Conventional continuous quantum heat engines with incoherent heat transfer perform poorly as they exploit two-body interactions between the system and hot or cold baths, thus having limited capability to outperform their classical counterparts. We introduce distinct continuous quantum heat engines that utilize coherent heat transfer with baths, yielding genuine quantum enhancement in performance. These coherent engines consist of one qutrit system and two photonic baths and enable coherent heat transfer via two-photon transitions involving three-body interactions between the system and hot and cold baths. We demonstrate that coherent engines deliver significantly higher power output with much greater reliability, i.e., lower signal-to-noise ratio of the power, by hundreds of folds over their incoherent counterparts. Importantly, coherent engines can operate close to or at the maximal achievable reliability allowed by the quantum thermodynamic uncertainty relation. Moreover, coherent engines manifest more nonclassical features than incoherent engines because they violate the classical thermodynamic uncertainty relation by a greater amount and for a wider range of parameters. These genuine enhancements in the performance of coherent engines are directly attributed to their capacity to harness higher energetic coherence for the resonant driving case. The experimental feasibility of coherent engines and the improved understanding of how quantum properties can enhance performance may find applications in quantum enabled technologies.
|
Hinarejos, M., Di Franco, C., Romanelli, A., & Perez, A. (2014). Chirality asymptotic behavior and non-Markovianity in quantum walks on a line. Phys. Rev. A, 89(5), 052330–7pp.
Abstract: We investigate the time evolution of the chirality reduced density matrix for a discrete-time quantum walk on a one-dimensional lattice. The matrix is obtained by tracing out the spatial degree of freedom. We analyze the standard case, without decoherence, and the situation in which decoherence appears in the form of broken links in the lattice. By examining the trace distance for possible pairs of initial states as a function of time, we conclude that the evolution of the reduced density matrix is non-Markovian, in the sense defined by Breuer, Laine, and Piilo [Phys. Rev. Lett. 103, 210401 (2009)]. As the level of noise increases, the dynamics approaches a Markovian process. The highest non-Markovianity corresponds to the case without decoherence. The reduced density matrix tends always to a well-defined limit that we calculate, but only in the decoherence-free case is this limit nontrivial.
|
Senes, E., Argyropoulos, T., Tecker, F., & Wuensch, W. (2018). Beam-loading effect on breakdown rate in high-gradient accelerating cavities: An experiment at the Compact Linear Collider Test Facility at CERN. Phys. Rev. Accel. Beams, 21(10), 102001–8pp.
Abstract: Radio frequency breakdown rate is a crucial performance parameter that ensures that the design luminosity is achieved in the CLIC linear collider. The required low breakdown rate for CLIC, of the order of 10(-7) breakdown pulse(-1) m(-1), has been demonstrated in a number of 12 GHz CLIC prototype structures at gradients in excess of the design 100 MV/m accelerating gradient, however without the presence of the accelerated beam and associated beam loading. The beam loading induced by the approximately 1 A CLIC main beam significantly modifies the field distribution inside the structures, and the effect on breakdown rate is potentially significant so needs to be determined. A dedicated experiment has been carried out in the CLIC Test Facility CTF3 to measure this effect, and the results are presented.
|
Perez, A. (2016). Asymptotic properties of the Dirac quantum cellular automaton. Phys. Rev. A, 93(1), 012328–10pp.
Abstract: We show that the Dirac quantum cellular automaton [A. Bisio, G. M. D'Ariano, and A. Tosini, Ann. Phys. (N. Y.) 354, 244 (2015)] shares many properties in common with the discrete-time quantum walk. These similarities can be exploited to study the automaton as a unitary process that takes place at regular time steps on a one-dimensional lattice, in the spirit of general quantum cellular automata. In this way, it becomes an alternative to the quantum walk, with a dispersion relation that can be controlled by a parameter that plays a similar role to the coin angle in the quantum walk. The Dirac Hamiltonian is recovered under a suitable limit. We provide two independent analytical approximations to the long-term probability distribution. It is shown that, starting from localized conditions, the asymptotic value of the entropy of entanglement between internal and motional degrees of freedom overcomes the known limit that is approached by the quantum walk for the same initial conditions and is similar to the ones achieved by highly localized states of the Dirac equation.
|
Fuster-Martinez, N., Bruce, R., Hofer, M., Persson, T., Redaelli, S., & Tomas, R. (2022). Aperture measurements with ac dipoles and movable collimators in the Large Hadron Collider. Phys. Rev. Accel. Beams, 25(10), 101002–13pp.
Abstract: This paper presents a first experimental demonstration of a new nondestructive method for aperture measurements based on ac dipoles. In high intensity particle colliders, such as the CERN Large Hadron Collider (LHC), aperture measurements are crucial for a safe operation while optimizing the optics in order to reduce the size of the colliding beams and hence increase the luminosity. In the LHC, this type of measurements became mandatory during beam commissioning and the current method used is based on the destructive blowup of bunches using a transverse damper. The new method presented in this paper uses the ac-dipole excitation to generate adiabatic forced oscillations of the beam in order to create losses to identify the smallest aperture in the machine without blowing up the beam emittance. A precise and tuneable control of the oscillation amplitude enables the beams to be reused for several aperture measurements, as well as for other subsequent commissioning activities. Measurements performed with the new method are presented and compared with the current LHC transverse damper method for two different beam energies and two different operational optics.
|