|   | 
Details
   web
Records
Author Perez, A.
Title (down) Asymptotic properties of the Dirac quantum cellular automaton Type Journal Article
Year 2016 Publication Physical Review A Abbreviated Journal Phys. Rev. A
Volume 93 Issue 1 Pages 012328 - 10pp
Keywords
Abstract We show that the Dirac quantum cellular automaton [A. Bisio, G. M. D'Ariano, and A. Tosini, Ann. Phys. (N. Y.) 354, 244 (2015)] shares many properties in common with the discrete-time quantum walk. These similarities can be exploited to study the automaton as a unitary process that takes place at regular time steps on a one-dimensional lattice, in the spirit of general quantum cellular automata. In this way, it becomes an alternative to the quantum walk, with a dispersion relation that can be controlled by a parameter that plays a similar role to the coin angle in the quantum walk. The Dirac Hamiltonian is recovered under a suitable limit. We provide two independent analytical approximations to the long-term probability distribution. It is shown that, starting from localized conditions, the asymptotic value of the entropy of entanglement between internal and motional degrees of freedom overcomes the known limit that is approached by the quantum walk for the same initial conditions and is similar to the ones achieved by highly localized states of the Dirac equation.
Address [Perez, A.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, E-46100 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947 ISBN Medium
Area Expedition Conference
Notes WOS:000368291600005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2520
Permanent link to this record
 

 
Author Fuster-Martinez, N.; Bruce, R.; Hofer, M.; Persson, T.; Redaelli, S.; Tomas, R.
Title (down) Aperture measurements with ac dipoles and movable collimators in the Large Hadron Collider Type Journal Article
Year 2022 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams
Volume 25 Issue 10 Pages 101002 - 13pp
Keywords
Abstract This paper presents a first experimental demonstration of a new nondestructive method for aperture measurements based on ac dipoles. In high intensity particle colliders, such as the CERN Large Hadron Collider (LHC), aperture measurements are crucial for a safe operation while optimizing the optics in order to reduce the size of the colliding beams and hence increase the luminosity. In the LHC, this type of measurements became mandatory during beam commissioning and the current method used is based on the destructive blowup of bunches using a transverse damper. The new method presented in this paper uses the ac-dipole excitation to generate adiabatic forced oscillations of the beam in order to create losses to identify the smallest aperture in the machine without blowing up the beam emittance. A precise and tuneable control of the oscillation amplitude enables the beams to be reused for several aperture measurements, as well as for other subsequent commissioning activities. Measurements performed with the new method are presented and compared with the current LHC transverse damper method for two different beam energies and two different operational optics.
Address [Fuster-Martinez, N.] CSIC UV, Inst Fis Corpuscular, Valencia 46908, Spain, Email: nuria.fuster@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000875736400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5397
Permanent link to this record