|   | 
Details
   web
Records
Author n_TOF Collaboration (Praena, J. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.; Tarifeño-Saldivia, A.
Title (up) Measurement and resonance analysis of the S-33(n,alpha)Si-30 cross section at the CERN n_TOF facility in the energy region from 10 to 300 keV Type Journal Article
Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 97 Issue 6 Pages 064603 - 10pp
Keywords
Abstract The (33)(n , alpha)Si-30 cross section has been measured at the neutron time-of-flight (n_TOF) facility at CERN in the neutron energy range from 10 to 300 keV relative to the B-10(n, alpha)(7) Li cross-section standard. Both reactions were measured simultaneously with a set of micromegas detectors. The flight path of 185 m has allowed us to obtain the cross section with high-energy resolution. An accurate description of the resonances has been performed by means of the multilevel multichannel R-matrix code SAMMY. The results show a significantly higher area of the biggest resonance (13.45 keV) than the unique high-resolution (n , alpha) measurement. The new parametrization of the 13.45-keV resonance is similar to that of the unique transmission measurement. This resonance is a matter of research in neutron-capture therapy. The S-33(n, alpha)Si-30 cross section has been studied in previous works because of its role in the production of S-36 in stars, which is currently overproduced in stellar models compared to observations.
Address [Praena, J.; Porras, I] Univ Granada, Granada, Spain, Email: jpraena@ugr.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000434017300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3597
Permanent link to this record
 

 
Author n_TOF Collaboration (Lederer-Woods, C. et al); Domingo-Pardo, C.; Tain, J.L.; Tarifeño-Saldivia, A.
Title (up) Measurement of Ge-73(n, gamma) cross sections and implications for stellar nucleosynthesis Type Journal Article
Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 790 Issue Pages 458-465
Keywords Nucleosynthesis; Neutron capture; s process; Germanium; n_TOF
Abstract Ge-73(n, gamma) cross sections were measured at the neutron time-of-flight facility n_TOF at CERN up to neutron energies of 300 keV, providing for the first time experimental data above 8 keV. Results indicate that the stellar cross section at kT = 30 keV is 1.5 to 1.7 times higher than most theoretical predictions. The new cross sections result in a substantial decrease of Ge-73 produced in stars, which would explain the low isotopic abundance of Ge-73 in the solar system.
Address [Lederer-Woods, C.; Battino, U.; Tattersalla, A.; Dietz, M.] Univ Edinburgh, Sch Phys & Astron, Edinburgh, Midlothian, Scotland, Email: claudia.lederer-woods@ed.ac.uk
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000460118200058 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3936
Permanent link to this record
 

 
Author n_TOF Collaboration (Amaducci, S. et al); Babiano-Suarez, V.; Caballero-Ontanaya, L.; Domingo-Pardo, C.; Ladarescu, I.; Tain, J.L.; Tarifeño-Saldivia, A.
Title (up) Measurement of the 140Ceðn;γþ Cross Section at n_TOF and Its Astrophysical Implications for the Chemical Evolution of the Universe Type Journal Article
Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 132 Issue 12 Pages 122701 - 8pp
Keywords
Abstract 140Ce(n, gamma) is a key reaction for slow neutron -capture (s -process) nucleosynthesis due to being a bottleneck in the reaction flow. For this reason, it was measured with high accuracy (uncertainty approximate to 5%) at the n_TOF facility, with an unprecedented combination of a high purity sample and low neutron -sensitivity detectors. The measured Maxwellian averaged cross section is up to 40% higher than previously accepted values. Stellar model calculations indicate a reduction around 20% of the s -process contribution to the Galactic cerium abundance and smaller sizeable differences for most of the heavier elements. No variations are found in the nucleosynthesis from massive stars.
Address [Amaducci, S.; Cosentino, L.; Finocchiaro, P.; Brown, A.] INFN, Lab Nazl Sud, Catania, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:001202102900011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6074
Permanent link to this record
 

 
Author n_TOF Collaboration (Balibrea-Correa, J. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.; Tarifeño-Saldivia, A.
Title (up) Measurement of the alpha ratio and (n, gamma) cross section of U-235 from 0.2 to 200 eV at n_TOF Type Journal Article
Year 2020 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 102 Issue 4 Pages 044615 - 18pp
Keywords
Abstract We measured the neutron capture-to-fission cross-section ratio (alpha ratio) and the capture cross section of U-235 between 0.2 and 200 eV at the nTOF facility at CERN. The simultaneous measurement of neutron-induced capture and fission rates was performed by means of the nTOF BaF2 Total Absorption Calorimeter (TAC), used for detection of gamma rays, in combination with a set of micromegas detectors used as fission tagging detectors. The energy dependence of the capture cross section was obtained with help of the Li-6(n, t) standard reaction determining the n_TOF neutron fluence; the well-known integral of the U-235(n, f) cross section between 7.8 and 11 eV was then used for its absolute normalization. The alpha ratio, obtained with slightly higher statistical fluctuations, was determined directly, without need for any reference cross section. To perform the analysis of this measurement we developed a new methodology to correct the experimentally observed effect that the probabilities of detecting a fission reaction in the TAC and the micromegas detectors are not independent. The results of this work have been used in a new evaluation of U-235 performed within the scope of the Collaborative International Evaluated Library Organisation (CIELO) Project, and are consistent with the ENDF/B-VIII.0 and JEFF-3.3 capture cross sections below 4 eV and above 100 eV. However, the measured capture cross section is on average 10% larger between 4 and 100 eV.
Address [Balibrea-Correa, J.; Mendoza, E.; Cano-Ott, D.] Ctr Invest Energet Medioambientales & Tecnol, CIEMAT, Madrid, Spain, Email: emilio.mendoza@ciemat.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000579839000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4575
Permanent link to this record
 

 
Author n_TOF Collaboration (Gawlik, A. et al); Domingo-Pardo, C.; Tain, J.L.; Tarifeño-Saldivia, A.
Title (up) Measurement of the Ge-70(n, gamma) cross section up to 300 keV at the CERN n_TOF facility Type Journal Article
Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 100 Issue 4 Pages 045804 - 10pp
Keywords
Abstract Neutron capture data on intermediate mass nuclei are of key importance to nucleosynthesis in the weak component of the slow neutron capture processes, which occurs in massive stars. The (n,gamma) cross section on Ge-70, which is mainly produced in the s process, was measured at the neutron time-of-flight facility n_TOF at CERN. Resonance capture kernels were determined up to 40 keV neutron energy and average cross sections up to 300 keV. Stellar cross sections were calculated from kT = 5 keV to kT = 100 keV and are in very good agreement with a previous measurement by Walter and Beer (1985) and recent evaluations. Average cross sections are in agreement with Walter and Beer (1985) over most of the neutron energy range covered, while they are systematically smaller for neutron energies above 150 keV. We have calculated isotopic abundances produced in s-process environments in a 25 solar mass star for two initial metallicities (below solar and close to solar). While the low metallicity model reproduces best the solar system germanium isotopic abundances, the close to solar model shows a good global match to solar system abundances in the range of mass numbers A = 60-80.
Address [Gawlik, A.; Andrzejewski, J.; Perkowski, J.; Marganiec, J.] Univ Lodz, Lodz, Poland, Email: claudia.lederer-woods@ed.ac.uk
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000490751000004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4174
Permanent link to this record
 

 
Author n_TOF Collaboration (Gawlik, A. et al); Domingo-Pardo, C.; Tain, J.L.; Tarifeño-Saldivia, A.
Title (up) Measurement of the Ge-76(n, gamma) cross section at the n_TOF facility at CERN Type Journal Article
Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 104 Issue 4 Pages 044610 - 7pp
Keywords
Abstract The Ge-76(n, gamma) reaction has been measured at the n_TOF facility at CERN via the time-of-flight technique. Neutron capture cross sections on Ge-76 are of interest to a variety of low-background experiments, such as neutrinoless double beta decay searches, and to nuclear astrophysics. We have determined resonance capture kernels up to 52 keV neutron energy and used the new data to calculate Maxwellian-averaged neutron capture cross sections for k(B)T values of 5 to 100 keV.
Address [Gawlik-Ramiega, A.; Andrzejewski, J.; Perkowski, J.] Univ Lodz, Lodz, Poland, Email: aleksandra.gawlik@uni.lodz.pl
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000707420400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5003
Permanent link to this record
 

 
Author n_TOF Collaboration (Wright, T. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.; Tarifeño-Saldivia, A.
Title (up) Measurement of the U-238(n,gamma) cross section up to 80 keV with the Total Absorption Calorimeter at the CERN n_TOF facility Type Journal Article
Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 96 Issue 6 Pages 064601 - 11pp
Keywords
Abstract The radiative capture cross section of a highly pure (99.999%), 6.125(2) grams and 9.56(5) x 10(-4) atoms/barn areal density U-238 sample has been measured with the Total Absorption Calorimeter (TAC) in the 185 m flight path at the CERN neutron time-of-flight facility n_TOF. This measurement is in response to the NEA High Priority Request list, which demands an accuracy in this cross section of less than 3% below 25 keV. These data have undergone careful background subtraction, with special care being given to the background originating from neutrons scattered by the 238U sample. Pileup and dead-time effects have been corrected for. The measured cross section covers an energy range between 0.2 eV and 80 keV, with an accuracy that varies with neutron energy, being better than 4% below 25 keV and reaching at most 6% at higher energies.
Address [Wright, T.; Billowes, J.; Ryan, J. A.; Ware, T.] Univ Manchester, Manchester, Lancs, England, Email: tobias.wright@manchester.ac.uk
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000416848700005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3392
Permanent link to this record
 

 
Author Kiss, G.G. et al; Tarifeño-Saldivia, A.; Tain, J.L.; Agramunt, J.; Algora, A.; Domingo-Pardo, C.; Morales, A.I.; Nacher, E.; Rubio, B.; Tolosa, A.
Title (up) Measuring the beta-decay Properties of Neutron-rich Exotic Pm, Sm, Eu, and Gd Isotopes to Constrain the Nucleosynthesis Yields in the Rare-earth Region Type Journal Article
Year 2022 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 936 Issue 2 Pages 107 - 18pp
Keywords
Abstract The beta-delayed neutron-emission probabilities of 28 exotic neutron-rich isotopes of Pm, Sm, Eu, and Gd were measured for the first time at RIKEN Nishina Center using the Advanced Implantation Detector Array (AIDA) and the BRIKEN neutron detector array. The existing beta-decay half-life (T (1/2)) database was significantly increased toward more neutron-rich isotopes, and uncertainties for previously measured values were decreased. The new data not only constrain the theoretical predictions of half-lives and beta-delayed neutron-emission probabilities, but also allow for probing the mechanisms of formation of the high-mass wing of the rare-earth peak located at A approximate to 160 in the r-process abundance distribution through astrophysical reaction network calculations. An uncertainty quantification of the calculated abundance patterns with the new data shows a reduction of the uncertainty in the rare-earth peak region. The newly introduced variance-based sensitivity analysis method offers valuable insight into the influence of important nuclear physics inputs on the calculated abundance patterns. The analysis has identified the half-lives of Sm-168 and of several gadolinium isotopes as some of the key variables among the current experimental data to understand the remaining abundance uncertainty at A = 167-172.
Address [Kiss, G. G.; Vitez-Sveiczer, A.; Algora, A.; Szegedi, T. N.] Inst Nucl Res ATOMKI, Bem Ter 18-c, H-4026 Debrecen, Hungary, Email: ggkiss@atomki.hu;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000850804600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5353
Permanent link to this record
 

 
Author n_TOF Collaboration (Gunsing, F. et al); Domingo-Pardo, C.; Tain, J.L.; Tarifeño-Saldivia, A.
Title (up) Nuclear data activities at the n_TOF facility at CERN Type Journal Article
Year 2016 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus
Volume 131 Issue 10 Pages 371 - 13pp
Keywords
Abstract Nuclear data in general, and neutron-induced reaction cross sections in particular, are important for a wide variety of research fields. They play a key role in the safety and criticality assessment of nuclear technology, not only for existing power reactors but also for radiation dosimetry, medical applications, the transmutation of nuclear waste, accelerator-driven systems, fuel cycle investigations and future reactor systems as in Generation IV. Applications of nuclear data are also related to research fields as the study of nuclear level densities and stellar nucleosynthesis. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. Experimental nuclear reaction data are compiled on a worldwide basis by the international network of Nuclear Reaction Data Centres (NRDC) in the EXFOR database. The EXFOR database forms an important link between nuclear data measurements and the evaluated data libraries. CERN's neutron time-of-flight facility nTOF has produced a considerable amount of experimental data since it has become fully operational with the start of the scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at CERN's neutron time-of-flight facility nTOF will be presented.
Address [Gunsing, F.; Belloni, F.; Berthoumieux, E.; Diakaki, M.; Dupont, E.] CEA Saclay, Irfu, Gif Sur Yvette, France, Email: gunsing@cea.fr
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-5444 ISBN Medium
Area Expedition Conference
Notes WOS:000386722000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2850
Permanent link to this record
 

 
Author Phong, V.H. et al; Agramunt, J.; Algora, A.; Domingo-Pardo, C.; Morales, A.I.; Tain, J.L.; Tarifeño-Saldivia, A.; Tolosa-Delgado, A.
Title (up) Observation of a μs isomer in In-134(49)85: Proton-neutron coupling “southeast” of Sn-132(50)82 Type Journal Article
Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 100 Issue 1 Pages 011302 - 6pp
Keywords
Abstract We report on the observation of a microsecond isomeric state in the single-proton-hole, three-neutron-particle nucleus In-134. The nuclei of interest were produced by in-flight fission of a U-238 beam at the Radioactive Isotope Beam Factory at RIKEN. The isomer depopulates through a gamma ray of energy 56.7(1) keV and with a half-life of T-1/2 = 3.5(4) μs. Based on the comparison with shell-model calculations, we interpret the isomer as the I-pi = 5(-) member of the pi 0g(9/2)(-1) circle times nu 1f(7/2)(3) multiplet, decaying to the I-pi = 7(-) ground state with a reduced-transition probability of B(E2; 5(-) -> 7(-)) = 0.53(6) W.u. Observation of this isomer, and lack of evidence in the current work for a I-pi = 5(-) isomer decay in In-132, provides a benchmark of the proton-neutron interaction in the region of the nuclear chart “southeast” of Sn-132, where experimental information on excited states is sparse.
Address [Phong, V. H.; Lorusso, G.; Liu, J.; Matsui, K.; Nishimura, S.; Ahn, D. S.; Baba, H.; Go, S.; Isobe, T.; Kiss, G.; Kubono, S.; Sakurai, H.; Shimizu, Y.; Sumikama, T.; Suzuki, H.; Takeda, H.] RIKEN, RIKEN Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan, Email: giuseppe.lorusso@npl.co.uk
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000477895400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4080
Permanent link to this record