|   | 
Details
   web
Records
Author Huyuk, T. et al; Gadea, A.; Aliaga-Varea, R.J.; Domingo-Pardo, C.
Title (up) Conceptual design of the early implementation of the NEutron Detector Array (NEDA) with AGATA Type Journal Article
Year 2016 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 52 Issue 3 Pages 55 - 8pp
Keywords
Abstract The NEutron Detector Array (NEDA) project aims at the construction of a new high-efficiency compact neutron detector array to be coupled with large gamma-ray arrays such as AGATA. The application of NEDA ranges from its use as selective neutron multiplicity filter for fusion-evaporation reaction to a large solid angle neutron tagging device. In the present work, possible configurations for the NEDA coupled with the Neutron Wall for the early implementation with AGATA has been simulated, using Monte Carlo techniques, in order to evaluate their performance figures. The goal of this early NEDA implementation is to improve, with respect to previous instruments, efficiency and capability to select multiplicity for fusion-evaporation reaction channels in which 1, 2 or 3 neutrons are emitted. Each NEDA detector unit has the shape of a regular hexagonal prism with a volume of about 3.23 l and it is filled with the EJ301 liquid scintillator, that presents good neutron-gamma discrimination properties. The simulations have been performed using a fusion-evaporation event generator that has been validated with a set of experimental data obtained in the Ni-58 + Fe-56 reaction measured with the Neutron Wall detector array.
Address [Hueyuek, Tayfun; Gadea, Andres; Jose Aliaga-Varea, Ramon; Domingo-Pardo, Cesar] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Paterna, Valencia, Spain, Email: huyuk@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000372866900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2607
Permanent link to this record
 

 
Author Aliaga, R.J.; Herrero-Bosch, V.; Capra, S.; Pullia, A.; Duenas, J.A.; Grassi, L.; Triossi, A.; Domingo-Pardo, C.; Gadea, R.; Gonzalez, V.; Huyuk, T.; Sanchis, E.; Gadea, A.; Mengoni, D.
Title (up) Conceptual design of the TRACE detector readout using a compact, dead time-less analog memory ASIC Type Journal Article
Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 800 Issue Pages 34-39
Keywords Analog memory; Dead time; Detector readout; Front-end electronics; Switched Capacitor Array (SCA); Triggerless data acquisition
Abstract The new TRacking Array for light Charged particle Ejectiles (TRACE) detector system requires monitorization and sampling of all pulses in a large number of channels with very strict space and power consumption restrictions for the front-end electronics and cabling, Its readout system is to be based on analog memory ASICs with 64 channels each that sample a 1 μs window of the waveform of any valid pulses at 200 MHz while discarding any other signals and are read out at 50 MHz with external ADC digitization. For this purpose, a new, compact analog memory architecture is described that allows pulse capture with zero dead time in any channel while vastly reducing the total number of storage cells, particularly for large amounts of input channels. This is accomplished by partitioning the typical Switched Capacitor Array structure into two pipelined, asymmetric stages and introducing FIFO queue-like control circuitry for captured data, achieving total independence between the capture and readout operations.
Address [Aliaga, R. J.; Domingo-Pardo, C.; Hueyuek, T.; Gadea, A.] Inst Fis Corpuscular, Paterna 46980, Spain, Email: raalva@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000361878200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2407
Permanent link to this record
 

 
Author Goasduff, A.; Valiente-Dobon, J.J.; Lunardi, S.; Haas, F.; Gadea, A.; de Angelis, G.; Bazzacco, D.; Courtin, S.; Farnea, E.; Gottardo, A.; Michelagnoli, C.; Mengoni, D.; Napoli, D.R.; Recchia, F.; Sahin, E.; Ur, C.A.
Title (up) Counting rate measurements for lifetime experiments using the RDDS method with the new generation gamma-ray array AGATA Type Journal Article
Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 758 Issue Pages 1-3
Keywords Lifetime measurement; gamma spectroscopy; Counting rate
Abstract The differential Recoil Distance Doppler Shift (RDDS) method after multinucleon transfer (MNT) reactions to measure lifetimes of excited states in neutron-rich nuclei requires the use of a thick energy degrader for the recoiling ejectiles that are then detected in a spectrometer. This type of measurements greatly benefits from the use of the new generation segmented gamma-ray detectors, such as the AGATA demonstrator which offers unprecedented energy and angular resolutions. In order to make an optimized choice of the material and the thickness of the degrader for lifetime measurements using the RODS method after MNT, an experiment has been performed with the AGATA demonstrator. Counting rate measurements for different degraders are presented.
Address [Goasduff, A.; Haas, F.; Courtin, S.] Univ Strasbourg, IPHC, F-67037 Strasbourg, France, Email: Alain.Goasduff@csnsm.in2p3.fr
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000338348900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1829
Permanent link to this record
 

 
Author Krolas, W. et al; Gadea, A.
Title (up) Coupling of the proton-hole and neutron-particle states in the neutron-rich (48)K isotope Type Journal Article
Year 2011 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 84 Issue 6 Pages 064301 - 8pp
Keywords
Abstract Excited states in the Z = 19, N = 29 neutron-rich (48)K isotope have been studied using deep-inelastic transfer reactions with a thick target at Gammasphere and with a thin target at the PRISMA-CLARA spectrometer. The lowest excited states were located; they involve a proton hole in the s(1/2) or d(3/2) orbital coupled to a p(3/2) neutron. A new 7.1(5)-ns, 5(+) isomer, the analog of the 7/2 isomer in (47)K, was identified. Based on the observed gamma-decay pattern of the isomer a revised spin-parity assignment of 1(-) is proposed for the ground state of (48)K.
Address [Krolas, W.; Broda, R.; Fornal, B.; Pawlat, T.; Szpak, B.; Wrzesinski, J.] H Niewodniczanski Inst Nucl Phys PAN, PL-31342 Krakow, Poland
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000297552300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 835
Permanent link to this record
 

 
Author PreSPEC and AGATA Collaborations (Ralet, D. et al); Gadea, A.
Title (up) Data-flow coupling and data-acquisition triggers for the PreSPEC-AGATA campaign at GSI Type Journal Article
Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 786 Issue Pages 32-39
Keywords AGATA; PreSPEC; MBS; NARVAL; DAQ; Trigger
Abstract The PreSPEC setup for high-resolution 'gamma-ray spectroscopy using radioactive ion beams was employed for experimental campaigns in 2012 and 2014. The setup consisted of the state of the art Advanced GAmma Tracking Array (AGATA) and the High Energy gamma cleteCTOR (HECTOR+) positioned around a secondary target at the final focal plane of the GSI FRagment Separator (FRS) to perform in-beam gamma-ray spectroscopy of exotic nuclei. The Lund York Cologne CAlorimeter (LYCCA) was used to identify the reaction products. In this paper we report on the trigger scheme used during the campaigns. The dataflow coupling between the Multi-Branch System (MBS) based Data AcQuisition (DAQ) used for FRS-LYCCA and the “Nouvelle Acquisition temps Reel Version 1.2 Avec Linux” (NARVAL) based acquisition system used for AGATA are also described.
Address [Ralet, D.; Pietralla, N.] Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany, Email: D.Ralet@gsi.de
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000353068600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2203
Permanent link to this record
 

 
Author Egea, F.J. et al; Gadea, A.; Barrientos, D.; Huyuk, T.
Title (up) Design and Test of a High-Speed Flash ADC Mezzanine Card for High-Resolution and Timing Performance in Nuclear Structure Experiments Type Journal Article
Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 60 Issue 5 Pages 3526-3531
Keywords
Abstract This work describes new electronics for the EX-OGAM2 (HP-Ge detector array) and NEDA (BC501A-based neutron detector array). A new digitizing card with high resolution has been designed for gamma-ray and neutron spectroscopy experiments. The higher bandwidth requirement of the NEDA signals, together with the necessity for accuracy, require a high sampling rate in order to preserve the shape for real-time Pulse Shape Analysis (PSA). The PSA is of paramount importance for the NEDA to discriminate between neutrons and gamma-ray signals. Both high resolution and high speed parameters are often difficult to achieve in a single electronic unit. These constraints, together with the need to build new digitizing electronics to improve performance and flexibility of signal analysis in nuclear physics experiments, led to the development a new FADC mezzanine card. In this work, the design and development are described, including the characterization procedure and the preliminary measurement results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000325827700015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1613
Permanent link to this record
 

 
Author Doncel, M.; Gadea, A.; Valiente-Dobon, J.J.; Quintana, B.; Modamio, V.; Mengoni, D.; Moller, O.; Dewald, A.; Pietralla, N.
Title (up) Determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method in combination with magnetic spectrometers Type Journal Article
Year 2017 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 53 Issue 10 Pages 211 - 5pp
Keywords
Abstract The current work presents the determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method, in combination with spectrometers for ion identification, normalizing the intensity of the peaks by the ions detected in the spectrometer as a valid technique that produces results comparable to the ones obtained by the conventional shifted-to-unsifted peak ratio method. The technique has been validated using data measured with the gamma-ray array AGATA, the PRISMA spectrometer and the Cologne plunger setup. In this paper a test performed with the AGATA-PRISMA setup at LNL and the advantages of this new approach with respect to the conventional Recoil Distance Doppler Shift Method are discussed.
Address [Doncel, M.; Quintana, B.] Univ Salamanca, Lab Radiac Ionizantes, Salamanca, Spain, Email: doncel@liverpool.ac.uk
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000413766400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3346
Permanent link to this record
 

 
Author Egea Canet, F.J. et al; Gadea, A.; Huyuk, T.
Title (up) Digital Front-End Electronics for the Neutron Detector NEDA Type Journal Article
Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 62 Issue 3 Pages 1063-1069
Keywords Digital systems; front-end electronics; neutron detectors; neutron-gamma discrimination
Abstract This paper presents the design of the NEDA (Neutron Detector Array) electronics, a first attempt to involve the use of digital electronics in large neutron detector arrays. Starting from the front-end modules attached to the PMTs (PhotoMultiplier Tubes) and ending up with the data processing workstations, a comprehensive electronic system capable of dealing with the acquisition and pre-processing of the neutron array is detailed. Among the electronic modules required, we emphasize the front-end analog processing, the digitalization, digital pre-processing and communications firmware, as well as the integration of the GTS (Global Trigger and Synchronization) system, already used successfully in AGATA (Advanced Gamma Tracking Array). The NEDA array will be available for measurements in 2016.
Address [Egea Canet, F. J.; Gonzalez, V.; Sanchis, E.] Univ Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, Spain, Email: jaegea@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000356458000029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2279
Permanent link to this record
 

 
Author Mengoni, D.; Duenas, J.A.; Assie, M.; Boiano, C.; John, P.R.; Aliaga, R.J.; Beaumel, D.; Capra, S.; Gadea, A.; Gonzales, V.; Gottardo, A.; Grassi, L.; Herrero-Bosch, V.; Houdy, T.; Martel, I.; Parkar, V.V.; Perez-Vidal, R.M.; Pullia, A.; Sanchis, E.; Triossi, A.; Valiente-Dobon, J.J.
Title (up) Digital pulse-shape analysis with a TRACE early silicon prototype Type Journal Article
Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 764 Issue Pages 241-246
Keywords Silicon detector; Light-charged particles; Digital pulse shape analysis; Particle identification; Gamma-ray spectroscopy
Abstract A highly segmented silicon-pad detector prototype has been tested to explore the performance of the digital pulse shape analysis in the discrimination of the particles reaching the silicon detector. For the first time a 200 tun thin silicon detector, grown using an ordinary floating zone technique, has been shown to exhibit a level discrimination thanks to the fine segmentation. Light-charged particles down to few MeV have been separated, including their punch-through. A coaxial HPGe detector in time coincidence has further confirmed the quality of the particle discrimination.
Address [Mengoni, D.; John, P. R.; Grassi, L.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000341987000030 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1929
Permanent link to this record
 

 
Author Modamio, V.; Valiente-Dobon, J.J.; Jaworski, G.; Huyuk, T.; Triossi, A.; Egea, J.; Di Nitto, A.; Soderstrom, P.A.; Ros, J.A.; de Angelis, G.; de France, G.; Erduran, M.N.; Erturk, S.; Gadea, A.; Gonzalez, V.; Kownacki, J.; Moszynski, M.; Nyberg, J.; Palacz, M.; Sanchis, E.; Wadsworthm, R.
Title (up) Digital pulse-timing technique for the neutron detector array NEDA Type Journal Article
Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 775 Issue Pages 71-76
Keywords Digital timing; Constant fraction discriminator; Liquid scintillator; BC501A; Neutron detector; NEDA
Abstract A new digital pulse-timing algorithm, to be used with the future neutron detector array NEDA, has been developed and tested. The time resolution of four 5 in diameter photomultiplier tubes (XP4512, R4144, R11833-100, and ET9390-kb), coupled to a cylindrical 5 in by 5 in BC501A liquict scintillator detector was measured by employing digital sampling electronics and a constant fraction discriminator (CFD) algorithm. The zero crossing of the CM algorithm was obtained with a cubic spline interpolation, which was continuous up to the second derivative. The performance of the algorithm was studied at sampling rates of 500 MS/s and 200 MS/s. The time resolution obtained with the digital electronics was compared to the values acquired with a standard analog CFD. The result of this comparison shows that the time resolution from the analog and the digital measurements at 500 MS/s and at 200 MS/s are within 15% for all the tested photomultiplier tubes.
Address [Modamio, V.; Valiente-Dobon, J. J.; Triossi, A.; de Angelis, G.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy, Email: victor.modamio@lnl.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000348040900011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2093
Permanent link to this record