|   | 
Details
   web
Records
Author Du, M.L.; Baru, V.; Dong, X.K.; Filin, A.; Guo, F.K.; Hanhart, C.; Nefediev, A.; Nieves, J.; Wang, Q.
Title (up) Coupled-channel approach to T-cc(+) including three-body effects Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 1 Pages 014024 - 19pp
Keywords
Abstract A coupled-channel approach is applied to the charged tetraquark state T-cc(+). recently discovered by the LHCb Collaboration. The parameters of the interaction are fixed by a fit to the observed line shape in the three-body (DD0)-D-0 pi(+) channel. Special attention is paid to the three-body dynamics in the T-cc(+) due to the finite life time of the D*. An approach to the T-cc(+) is argued to be self-consistent only if both manifestations of the three-body dynamics, the pion exchange between the D and D* mesons and the finite D* width, are taken into account simultaneously to ensure that three-body unitarity is preserved. This is especially important to precisely extract the pole position in the complex energy plane whose imaginary part is very sensitive to the details of the coupled-channel scheme employed. The (DD0)-D-0 and (DD+)-D-0 invariant mass distributions, predicted based on this analysis, are in good agreement with the LHCb data. The low-energy expansion of the D* D scattering amplitude is performed and the low-energy constants (the scattering length and effective range) are extracted. The compositeness parameter of the T-cc(+) is found to be close to unity, which implies that the T-cc(+) is a hadronic molecule generated by the interactions in the D*D-+(0) and D*D-0(+) channels. Employing heavy-quark spin symmetry, an isoscalar D* D* molecular partner of the T-cc(+) with J(P) = 1(+ )is predicted under the assumption that the DD* -D* D* coupled-channel effects can be neglected.
Address [Du, Meng-Lin; Nieves, Juan] Ctr Mixto CSIC UV, Inst Fis Corpuscular, Inst Invest Paterna, Apartado 22085, Valencia 46071, Spain, Email: du.menglin@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000747425300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5096
Permanent link to this record
 

 
Author Bruschini, R.; Gonzalez, P.
Title (up) Coupled-channel meson-meson scattering in the diabatic framework Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 7 Pages 074025 - 16pp
Keywords
Abstract We apply the diabatic framework, a QCD-based formalism for the unified study of quarkoniumlike systems in terms of heavy quark-antiquark and open-flavor meson-meson components, to the description of coupled-channel meson-meson scattering. For this purpose, we first introduce a numerical scheme to find the solutions of the diabatic Schrodinger equation for energies in the continuum, then we derive a general formula for calculating the meson-meson scattering amplitudes from these solutions. We thus obtain a completely nonperturbative procedure for the calculation of open-flavor meson-meson scattering cross sections from the diabatic potential, which is directly connected to lattice QCD calculations. A comprehensive analysis of various elastic cross sections for open-charm and open-bottom meson-meson pairs is performed in a wide range of the center-of-mass energies. The relevant structures are identified, showing a spectrum of quasiconventional and unconventional quarkoniumlike states. In addition to the customary Breit-Wigner peaks, we obtain nontrivial structures such as threshold cusps and minimums. Finally, our results are compared with existing data and with results from our previous bound-state-based analysis, finding full compatibility with both.
Address [Bruschini, R.; Gonzalez, P.] Univ Valencia CSIC, Unidad Teor, Inst Fis Corpusc, E-46980 Paterna, Valencia, Spain, Email: roberto.bruschini@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000753716600003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5120
Permanent link to this record
 

 
Author Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D.
Title (up) Coupling matter in modified Q gravity Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 8 Pages 084043 - 13pp
Keywords
Abstract We present a novel theory of gravity by considering an extension of symmetric teleparallel gravity. This is done by introducing, in the framework of the metric-affine formalism, a new class of theories where the nonmetricity Q is nonminimally coupled to the matter Lagrangian. More specifically, we consider a Lagrangian of the form L similar to f(1)(Q) + f(2)(Q)L-M, where f(1) and f(2) are generic functions of Q, and L-M is the matter Lagrangian. This nonminimal coupling entails the nonconservation of the energy-momentum tensor, and consequently the appearance of an extra force. The formulation of the gravity sector in terms of the Q instead of the curvature may result in subtle improvements of the theory. In the context of nonminimal matter couplings, we are therefore motivated to explore whether the new geometrical formulation in terms of the Q, when implemented also in the matter sector, would allow more universally consistent and viable realizations of the nonminimal coupling. Furthermore, we consider several cosmological applications by presenting the evolution equations and imposing specific functional forms of the functions f(1)(Q) and f(2)(Q), such as power-law and exponential dependencies of the nonminimal couplings. Cosmological solutions are considered in two general classes of models, and found to feature accelerating expansion at late times.
Address [Harko, Tiberiu] Babes Bolyai Univ, Dept Phys, Kogalniceanu St, Cluj Napoca 400084, Romania, Email: t.harko@ucl.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000448458600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3789
Permanent link to this record
 

 
Author Yamagata-Sekihara, J.; Nieves, J.; Oset, E.
Title (up) Couplings in coupled channels versus wave functions in the case of resonances: Application to the two A(1405) states Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 1 Pages 014003 - 15pp
Keywords
Abstract In this paper we develop a formalism to evaluate wave functions in momentum and coordinate space for the resonant states dynamically generated in a unitary coupled channel approach. The on-shell approach for the scattering matrix, commonly used, is also obtained in quantum mechanics with a separable potential, which allows one to write wave functions in a trivial way. We develop useful relationships among the couplings of the dynamically generated resonances to the different channels and the wave functions at the origin. The formalism provides an intuitive picture of the resonances in the coupled channel approach, as bound states of one bound channel, which decays into open ones. It also provides an insight and practical rules for evaluating couplings of the resonances to external sources and how to deal with final state interaction in production processes. As an application of the formalism we evaluate the wave functions of the two A(1405) states in the pi Sigma, (K) over barN, and other coupled channels. It also offers a practical way to study three-body systems when two of them cluster into a resonance.
Address [Yamagata-Sekihara, J.; Oset, E.] Univ Valencia, Dept Fis Teor, Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000286761200002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 582
Permanent link to this record
 

 
Author Gamermann, D.; Nieves, J.; Oset, E.; Ruiz Arriola, E.
Title (up) Couplings in coupled channels versus wave functions: Application to the X(3872) resonance Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 81 Issue 1 Pages 014029 - 14pp
Keywords
Abstract We perform an analytical study of the scattering matrix and bound states in problems with many physical coupled channels. We establish the relationship of the couplings of the states to the different channels, obtained from the residues of the scattering matrix at the poles, with the wave functions for the different channels. The couplings basically reflect the value of the wave functions around the origin in coordinate space. In the concrete case of the X(3872) resonance, understood as a bound state of D-0(D) over bar*(0) and D+D*(-) (and c.c. From now on, when we refer to D-0(D) over bar*(0), D+D*(-), or D (D) over bar* we are actually referring to the combination of these states with their complex conjugate in order to form a state with positive C-parity), with the D-0(D) over bar*(0) loosely bound, we find that the couplings to the two channels are essentially equal leading to a state of good isospin I = 0 character. This is in spite of having a probability for finding the D-0(D) over bar*(0) state much larger than for D+D*(-) since the loosely bound channel extends further in space. The analytical results, obtained with exact solutions of the Schrodinger equation for the wave functions, can be useful in general to interpret results found numerically in the study of problems with unitary coupled channels methods.
Address [Gamermann, D.; Nieves, J.; Oset, E.] Univ Valencia, Ctr Mixto, Inst Fis Corpuscular IFIC, CSIC,Inst Invest Paterna, Valencia 46071, Spain, Email: daniel.gamermann@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000284268800001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 329
Permanent link to this record