toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bernal, N.; Forero-Romero, J.E.; Garani, R.; Palomares-Ruiz, S. url  doi
openurl 
  Title (up) Systematic uncertainties from halo asphericity in dark matter searches Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 004 - 30pp  
  Keywords dark matter theory; dark matter simulations  
  Abstract Although commonly assumed to be spherical, dark matter halos are predicted to be non-spherical by N-body simulations and their asphericity has a potential impact on the systematic uncertainties in dark matter searches. The evaluation of these uncertainties is the main aim of this work, where we study the impact of aspherical dark matter density distributions in Milky-Way-like halos on direct and indirect searches. Using data from the large N-body cosmological simulation Bolshoi, we perform a statistical analysis and quantify the systematic uncertainties on the determination of local dark matter density and the so-called J factors for dark matter annihilations and decays from the galactic center. We find that, due to our ignorance about the extent of the non-sphericity of the Milky Way dark matter halo, systematic uncertainties can be as large as 35%, within the 95% most probable region, for a spherically averaged value for the local density of 0.3-0.4 GeV/cm(3). Similarly, systematic uncertainties on the J factors evaluated around the galactic center can be as large as 10% and 15%, within the 95% most probable region, for dark matter annihilations and decays, respectively.  
  Address [Bernal, Nicolas] Univ Estadual Paulista, Inst Fis Teor, ICTP South Amer Inst Fundamental Res, BR-01405 Sao Paulo, Brazil, Email: nicolas@ift.unesp.br;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000342642500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1958  
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J. url  doi
openurl 
  Title (up) Tensor perturbations in a general class of Palatini theories Type Journal Article
  Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 026 - 16pp  
  Keywords modified gravity; inflation; gravity; dark energy theory  
  Abstract We study a general class of gravitational theories formulated in the Palatini approach and derive the equations governing the evolution of tensor perturbations. In the absence of torsion, the connection can be solved as the Christoffel symbols of an auxiliary metric which is non-trivially related to the space-time metric. We then consider background solutions corresponding to a perfect fluid and show that the tensor perturbations equations (including anisotropic stresses) for the auxiliary metric around such a background take an Einstein-like form. This facilitates the study in a homogeneous and isotropic cosmological scenario where we explicitly establish the relation between the auxiliary metric and the spacetime metric tensor perturbations. As a general result, we show that both tensor perturbations coincide in the absence of anisotropic stresses.  
  Address [Jimenez, Jose Beltran] Univ Louvain, Inst Math & Phys, Ctr Cosmol Particle Phys & Phenomenol, B-1318 Louvain, Belgium, Email: jose.beltran@cpt.univ.mrs.fr;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000359215400027 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2368  
Permanent link to this record
 

 
Author de Putter, R.; Verde, L.; Jimenez, R. url  doi
openurl 
  Title (up) Testing LTB void models without the cosmic microwave background or large scale structure: new constraints from galaxy ages Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 02 Issue 2 Pages 047 - 22pp  
  Keywords dark energy experiments; dark energy theory; galaxy evolution  
  Abstract We present new observational constraints on inhomogenous models based on observables independent of the CMB and large-scale structure. Using Bayesian evidence we find very strong evidence for homogeneous LCDM model, thus disfavouring inhomogeneous models. Our new constraints are based on quantities independent of the growth of perturbations and rely on cosmic clocks based on atomic physics and on the local density of matter.  
  Address [de Putter, Roland; Verde, Licia; Jimenez, Raul] Univ Barcelona IEEC UB, ICC, Barcelona 08028, Spain, Email: rdeputter@icc.ub.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315576400047 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1362  
Permanent link to this record
 

 
Author Lopez-Honorez, L.; Mena, O.; Moline, A.; Palomares-Ruiz, S.; Vincent, A.C. url  doi
openurl 
  Title (up) The 21 cm signal and the interplay between dark matter annihilations and astrophysical processes Type Journal Article
  Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 08 Issue 8 Pages 004 - 40pp  
  Keywords dark matter theory; intergalactic media; reionization  
  Abstract Future dedicated radio interferometers, including HERA and SKA, are very promising tools that aim to study the epoch of reionization and beyond via measurements of the 21 cm signal from neutral hydrogen. Dark matter (DM) annihilations into charged particles change the thermal history of the Universe and, as a consequence, affect the 21 cm signal. Accurately predicting the effect of DM strongly relies on the modeling of annihilations inside halos. In this work, we use up-to-date computations of the energy deposition rates by the products from DM annihilations, a proper treatment of the contribution from DM annihilations in halos, as well as values of the annihilation cross section allowed by the most recent cosmological measurements from the Planck satellite. Given current uncertainties on the description of the astrophysical processes driving the epochs of reionization, X-ray heating and Lyman-alpha pumping, we find that disentangling DM signatures from purely astrophysical effects, related to early-time star formation processes or late-time galaxy X-ray emissions, will be a challenging task. We conclude that only annihilations of DM particles with masses of similar to 100 MeV, could leave an unambiguous imprint on the 21 cm signal and, in particular, on the 21cm power spectrum. This is in contrast to previous, more optimistic results in the literature, which have claimed that strong signatures might also be present even for much higher DM masses. Additional measurements of the 21cm signal at different cosmic epochs will be crucial in order to break the strong parameter degeneracies between DM annihilations and astrophysical effects and undoubtedly single out a DM imprint for masses different from similar to 100 MeV.  
  Address [Lopez-Honorez, Laura] Vrije Univ Brussel, Theoret Natuurkunde, Pl Laan 2, B-1050 Brussels, Belgium, Email: llopezho@vub.ac.be;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000389859100050 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2899  
Permanent link to this record
 

 
Author Figueroa, D.G.; Florio, A.; Torrenti, F.; Valkenburg, W. url  doi
openurl 
  Title (up) The art of simulating the early universe. Part I. Integration techniques and canonical cases Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 035 - 108pp  
  Keywords particle physics – cosmology connection; physics of the early universe; cosmological phase transitions; inflation  
  Abstract We present a comprehensive discussion on lattice techniques for the simulation of scalar and gauge field dynamics in an expanding universe. After reviewing the continuum formulation of scalar and gauge field interactions in Minkowski and FLRW backgrounds, we introduce the basic tools for the discretization of field theories, including lattice gauge invariant techniques. Following, we discuss and classify numerical algorithms, ranging from methods of O(delta t(2)) accuracy like staggered leapfrog and Verlet integration, to Runge-Kutta methods up to O(delta t(4)) accuracy, and the Yoshida and Gauss-Legendre higher-order integrators, accurate up to O(delta t(10)) We adapt these methods for their use in classical lattice simulations of the non-linear dynamics of scalar and gauge fields in an expanding grid in 3+1 dimensions, including the case of 'self-consistent' expansion sourced by the volume average of the fields' energy and pressure densities. We present lattice formulations of canonical cases of: i) Interacting scalar fields, ii) Abelian U(1) gauge theories, and iii) Non-Abelian SU(2) gauge theories. In all three cases we provide symplectic integrators, with accuracy ranging from O(delta t(2)) up to O(delta t(10)) For each algorithm we provide the form of relevant observables, such as energy density components, field spectra and the Hubble constraint. We note that all our algorithms for gauge theories always respect the Gauss constraint to machine precision, including when 'self-consistent' expansion is considered. As a numerical example we analyze the post-inflationary dynamics of an oscillating inflaton charged under SU(2) x U(1). We note that the present manuscript is meant to be part of the theoretical basis for the code CosmoLattice, a multi-purpose MPI-based package for simulating the non-linear evolution of field theories in an expanding universe, publicly available at http://www.cosrnolattice.net.  
  Address [Figueroa, Daniel G.] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Valencia, Spain, Email: daniel.figueroa@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000644501000026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4822  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva