toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Massimi, C.; Cristallo, S.; Domingo-Pardo, C.; Lederer-Woods, C. doi  openurl
  Title (up) n_TOF: Measurements of Key Reactions of Interest to AGB Stars Type Journal Article
  Year 2022 Publication Universe Abbreviated Journal Universe  
  Volume 8 Issue 2 Pages 100 - 19pp  
  Keywords s process; MACS; time of flight  
  Abstract In the last 20 years, the neutron time-of-flight facility nTOF at CERN has been providing relevant data for the astrophysical slow neutron capture process (s process). At nTOF, neutron-induced radiative capture (n,gamma) as well as (n,p) and (n,alpha) reaction cross sections are measured as a function of energy, using the time-of-flight method. Improved detection systems, innovative ideas and collaborations with other neutron facilities have lead to a considerable contribution of the n_TOF collaboration to studying the s process in asymptotic giant branch stars. Results have been reported for stable and radioactive samples, i.e.,Mg- 24,Mg-25,Mg-26, Al-26, S-33,Fe- 54,Fe-57, Ni-58,Ni-59,Ni-62,Ni-63, Ge-70,Ge-72,Ge-73, Zr-90,Zr-91,Zr-92,Zr-93,Zr-94,Zr-96, La-139, Ce-140, Pm-147, Sm-151,Gd- 154,Gd-155,Gd-157, Tm-171, Os-186,Os-187,Os-188, Au-197, Tl-203,Tl-204,Pb- 204,Pb-206,Pb-207 and Bi-209 isotopes, while others are being studied or planned to be studied in the near future. In this contribution, we present an overview of the most successful achievements, and an outlook of future challenging measurements, including ongoing detection system developments.  
  Address [Massimi, Cristian] Univ Bologna, Dept Phys & Astron, I-40127 Bologna, Italy, Email: cristian.massimi@unibo.it;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000762514400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5144  
Permanent link to this record
 

 
Author Gariazzo, S.; Mena, O.; Ramirez, H.; Boubekeur, L. url  doi
openurl 
  Title (up) Primordial power spectrum features in phenomenological descriptions of inflation Type Journal Article
  Year 2017 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 17 Issue Pages 38-45  
  Keywords Inflation; Primordial power spectrum; Sound speed  
  Abstract We extend an alternative, phenomenological approach to inflation by means of an equation of state and a sound speed, both of them functions of the number of e-folds and four phenomenological parameters. This approach captures a number of possible inflationary models, including those with non-canonical kinetic terms or scale-dependent non-gaussianities. We perform Markov Chain Monte Carlo analyses using the latest cosmological publicly available measurements, which include Cosmic Microwave Background (CMB) data from the Planck satellite. Within this parameterization, we discard scale invariance with a significance of about 10 sigma, and the running of the spectral index is constrained as alpha(s) = -0.60(-0.10)(+0.08) x 10(-3) (68% CL errors). The limit on the tensor-to-scalar ratio is r < 0.005 at 95% CL from CMB data alone. We find no significant evidence for this alternative parameterization with present cosmological observations. The maximum amplitude of the equilateral non-gaussianity that we obtain, vertical bar f(NL)(equil)vertical bar < 1, is much smaller than the current Planck mission errors, strengthening the case for future high-redshift, all-sky surveys, which could reach the required accuracy on equilateral non-gaussianities.  
  Address [Gariazzo, Stefano] Univ Turin, Dept Phys, Via P Giuria 1, I-10125 Turin, Italy, Email: omena@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-6864 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000411869100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3319  
Permanent link to this record
 

 
Author Gariazzo, S.; Mena, O.; Schwetz, T. url  doi
openurl 
  Title (up) Quantifying the tension between cosmological and terrestrial constraints on neutrino masses Type Journal Article
  Year 2023 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 40 Issue Pages 101226 - 8pp  
  Keywords Neutrino masses; Neutrino mass ordering; Neutrino oscillations; Cosmological measurements of neutrino; masses  
  Abstract The sensitivity of cosmology to the total neutrino mass scale E m & nu; is approaching the minimal values required by oscillation data. We study quantitatively possible tensions between current and forecasted cosmological and terrestrial neutrino mass limits by applying suitable statistical tests such as Bayesian suspiciousness, parameter goodness-of-fit tests, or a parameter difference test. In particular, the tension will depend on whether the normal or the inverted neutrino mass ordering is assumed. We argue, that it makes sense to reject inverted ordering from the cosmology/oscillation comparison only if data are consistent with normal ordering. Our results indicate that, in order to reject inverted ordering with this argument, an accuracy on the sum of neutrino masses & sigma;(m & nu;) of better than 0.02 eV would be required from future cosmological observations.  
  Address [Gariazzo, Stefano] Ist Nazl Fis Nucl INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001042929800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5623  
Permanent link to this record
 

 
Author Perez-Perez, J.; Amare, J.C.; Bandac, I.C.; Bayo, A.; Borjabad-Sanchez, S.; Calvo-Mozota, J.M.; Cid-Barrio, L.; Hernandez-Antolin, R.; Hernandez-Molinero, B.; Novella, P.; Pelczar, K.; Pena-Garay, C.; Romeo, B.; Ortiz de Solorzano, A.; Sorel, M.; Torrent, J.; Uson, A.; Wojna-Pelczar, A.; Zuzel, G. url  doi
openurl 
  Title (up) Radon Mitigation Applications at the Laboratorio Subterráneo de Canfranc (LSC) Type Journal Article
  Year 2022 Publication Universe Abbreviated Journal Universe  
  Volume 8 Issue 2 Pages 112 - 20pp  
  Keywords radon; neutrinos; HPGe-detector; LSC  
  Abstract The Laboratorio Subterraneo de Canfranc (LSC) is the Spanish national hub for low radioactivity techniques and the associated scientific and technological applications. The concentration of the airborne radon is a major component of the radioactive budget in the neighborhood of the detectors. The LSC hosts a Radon Abatement System, which delivers a radon suppressed air with 1.1 & PLUSMN;0.2 mBq/m(3) of Rn-222. The radon content in the air is continuously monitored with an Electrostatic Radon Monitor. Measurements with the double beta decay demonstrators NEXT-NEW and CROSS and the gamma HPGe detectors show the important reduction of the radioactive background due to the purified air in the vicinity of the detectors. We also discuss the use of this facility in the LSC current program which includes NEXT-100, low background biology experiments and radiopure copper electroformation equipment placed in the radon-free clean room.  
  Address [Perez-Perez, Javier; Bandac, Iulian Catalin; Bayo, Alberto; Borjabad-Sanchez, Silvia; Calvo-Mozota, Jose Maria; Cid-Barrio, Laura; Hernandez-Antolin, Rebecca; Hernandez-Molinero, Beatriz; Pena-Garay, Carlos; Romeo, Beatriz] Lab Subterraneo Canfranc LSC, Canfranc Estn 22880, Spain, Email: javier.perez.perez@uj.edu.pl;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000762509500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5143  
Permanent link to this record
 

 
Author Zornoza, J.D. doi  openurl
  Title (up) Review on Indirect Dark Matter Searches with Neutrino Telescopes Type Journal Article
  Year 2021 Publication Universe Abbreviated Journal Universe  
  Volume 7 Issue 11 Pages 415 - 10pp  
  Keywords dark matter; neutrino telescopes; IceCube; ANTARES; KM3NeT; SuperK  
  Abstract The search for dark matter is one of the hottest topics in Physics today. The fact that about 80% of the matter of the Universe is of unknown nature has triggered an intense experimental activity to detect this kind of matter and a no less intense effort on the theory side to explain it. Given the fact that we do not know the properties of dark matter well, searches from different fronts are mandatory. Neutrino telescopes are part of this experimental quest and offer specific advantages. Among the targets to look for dark matter, the Sun and the Galactic Center are the most promising ones. Considering models of dark matter densities in the Sun, neutrino telescopes have put the best limits on spin-dependent cross section of proton-WIMP scattering. Moreover, they are competitive in the constraints on the thermally averaged annihilation cross-section for high WIMP masses when looking at the Galactic Centre. Other results are also reviewed.  
  Address [de Dios Zornoza, Juan] IFIC Inst Fis Corpuscular UV CSIC, C Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: zornoza@ific.uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000723346500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5044  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva