toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Carcamo Hernandez, A.E.; Vishnudath, K.N.; Valle, J.W.F. url  doi
openurl 
  Title (up) Linear seesaw mechanism from dark sector Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 046 - 18pp  
  Keywords Lepton Flavour Violation (charged); Multi-Higgs Models; Neutrino Mixing; Sterile or Heavy Neutrinos  
  Abstract We propose a minimal model where a dark sector seeds neutrino mass generation radiatively within the linear seesaw mechanism. Neutrino masses are calculable, since treelevel contributions are forbidden by symmetry. They arise from spontaneous lepton number violation by a small Higgs triplet vacuum expectation value. Lepton flavour violating processes e.g. μ-> e gamma can be sizeable, despite the tiny neutrino masses. We comment also on dark-matter and collider implications.  
  Address [Hernandez, A. E. Carcamo; Vishnudath, K. N.] Univ Tecn Federico Santa Maria, Casilla 110-V, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001184730300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5982  
Permanent link to this record
 

 
Author Baker, M.J.; Bordes, J.; Hong-Mo, C.; Tsun, T.S. url  doi
openurl 
  Title (up) Mass Hierarchy, Mixing, CP-Violation And Higgs Decay – Or Why Rotation Is Good For Us Type Journal Article
  Year 2011 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 26 Issue 13 Pages 2087-2124  
  Keywords Quark and lepton mixing; mass hierarchy; CP violation; rotation  
  Abstract The idea of a rank-one rotating mass matrix (R2M2) is reviewed detailing how it leads to ready explanations both for the fermion mass hierarchy and for the distinctive mixing patterns between up and down fermion states, which can be and have been tested against experiment and shown to be fully consistent with existing data. Further, R2M2 is seen to offer, as by-products: (i) a new solution to the strong CP problem in QCD by linking the theta-angle there to the Kobayashi-Maskawa CP-violating phase in the CKM matrix, and (ii) some novel predictions of possible anomalies in Higgs decay observable in principle at the LHC. A special effort is made to answer some questions raised.  
  Address [Baker, Michael J.; Tsun, Tsou Sheung] Univ Oxford, Inst Math, Oxford OX1 3LB, England, Email: bakerm@maths.ox.ac.uk  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000291219600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 643  
Permanent link to this record
 

 
Author de Salas, P.F.; Gariazzo, S.; Mena, O.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title (up) Neutrino Mass Ordering From Oscillations and Beyond: 2018 Status and Future Prospects Type Journal Article
  Year 2018 Publication Frontiers in Astronomy and Space Sciences Abbreviated Journal Front. Astron. Space Sci.  
  Volume 5 Issue Pages 36 - 50pp  
  Keywords neutrino mass ordering; neutrino oscillations; neutrinoless double beta (0v beta beta) decay; large scale structure formation; cosmic microwave Background (CMB); neutrino masses and flavor mixing  
  Abstract The ordering of the neutrino masses is a crucial input for a deep understanding of flavor physics, and its determination may provide the key to establish the relationship among the lepton masses and mixings and their analogous properties in the quark sector. The extraction of the neutrino mass ordering is a data-driven field expected to evolve very rapidly in the next decade. In this review, we both analyse the present status and describe the physics of subsequent prospects. Firstly, the different current available tools to measure the neutrino mass ordering are described. Namely, reactor, long-baseline (accelerator and atmospheric) neutrino beams, laboratory searches for beta and neutrinoless double beta decays and observations of the cosmic background radiation and the large scale structure of the universe are carefully reviewed. Secondly, the results from an up-to-date comprehensive global fit are reported: the Bayesian analysis to the 2018 publicly available oscillation and cosmological data sets provides strong evidence for the normal neutrino mass ordering vs. the inverted scenario, with a significance of 3.5 standard deviations. This preference for the normal neutrino mass ordering is mostly due to neutrino oscillation measurements. Finally, we shall also emphasize the future perspectives for unveiling the neutrinomass ordering. In this regard, apart from describing the expectations from the aforementioned probes, we also focus on those arising from alternative and novel methods, as 21 cm cosmology, core-collapse supernova neutrinos and the direct detection of relic neutrinos.  
  Address [de Salas, Pablo F.; Gariazzo, Stefano; Mena, Olga; Ternes, Christoph A.; Tortola, Mariam] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: omena@ific.uv.es  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-987x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000446788500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3755  
Permanent link to this record
 

 
Author Morisi, S.; Valle, J.W.F. url  doi
openurl 
  Title (up) Neutrino masses and mixing: a flavour symmetry roadmap Type Journal Article
  Year 2013 Publication Fortschritte der Physik-Progress of Physics Abbreviated Journal Fortschritte Phys.-Prog. Phys.  
  Volume 61 Issue 4-5 Pages 466-492  
  Keywords Neutrino masses; neutrino mixing; flavour symmetry  
  Abstract Over the last ten years tri-bimaximal mixing has played an important role in modeling the flavour problem. We give a short review of the status of flavour symmetry models of neutrino mixing. We concentrate on non-Abelian discrete symmetries, which provide a simple way to account for the TBM pattern. We discuss phenomenological implications such as neutrinoless double beta decay, lepton flavour violation as well as theoretical aspects such as the possibility to explain quarks and leptons within a common framework, such as grand unified models.  
  Address Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Valencia 46071, Spain, Email: morisi@ific.uv.es  
  Corporate Author Thesis  
  Publisher Wiley-V C H Verlag Gmbh Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0015-8208 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000317019900007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1412  
Permanent link to this record
 

 
Author De Romeri, V.; Giunti, C.; Stuttard, T.; Ternes, C.A. url  doi
openurl 
  Title (up) Neutrino oscillation bounds on quantum decoherence Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 097 - 24pp  
  Keywords Non-Standard Neutrino Properties; Specific BSM Phenomenology; Neutrino Mixing  
  Abstract We consider quantum-decoherence effects in neutrino oscillation data. Working in the open quantum system framework we adopt a phenomenological approach that allows to parameterize the energy dependence of the decoherence effects. We consider several phenomenological models. We analyze data from the reactor experiments RENO, Daya Bay and KamLAND and from the accelerator experiments NOvA, MINOS/MINOS+ and T2K. We obtain updated constraints on the decoherence parameters quantifying the strength of damping effects, which can be as low as Gamma ij less than or similar to 8 x 10-27 GeV at 90% confidence level in some cases. We also present sensitivities for the future facilities DUNE and JUNO.  
  Address [De Romeri, Valentina] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif UV C-Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: deromeri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001118948700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5849  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva