|   | 
Details
   web
Records
Author Carcamo Hernandez, A.E.; Hati, C.; Kovalenko, S.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title (up) Scotogenic neutrino masses with gauged matter parity and gauge coupling unification Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 034 - 25pp
Keywords Beyond Standard Model; Gauge Symmetry; Neutrino Physics
Abstract Building up on previous work we propose a Dark Matter (DM) model with gauged matter parity and dynamical gauge coupling unification, driven by the same physics responsible for scotogenic neutrino mass generation. Our construction is based on the extended gauge group SU(3)(c) circle times SU(3)(L) circle times U(1)(X) circle times U(1)(N), whose spontaneous breaking leaves a residual conserved matter parity, M-P, stabilizing the DM particle candidates of the model. The key role is played by Majorana SU(3) (L)-octet leptons, allowing the successful gauge coupling unification and a one-loop scotogenic neutrino mass generation. Theoretical consistency allows for a plethora of new particles at the less than or similar to O(10) TeV scale, hence accessible to future collider and low-energy experiments.
Address [Carcamo Hernandez, A. E.] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000766168700014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5162
Permanent link to this record
 

 
Author Carcamo Hernandez, A.E.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title (up) Simple theory for scotogenic dark matter with residual matter-parity Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 809 Issue Pages 135757 - 10pp
Keywords
Abstract Dark matter stability can result from a residual matter-parity symmetry surviving spontaneous breaking of an extended gauge symmetry. We propose the simplest scotogenic dark matter completion of the original SVS theory [1], in which the “dark sector” particles as well as matter-parity find a natural theoretical origin within the model. We briefly comment on its main features.
Address [Hernandez, A. E. Carcamo] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110 5, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000581871500057 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4601
Permanent link to this record
 

 
Author Addazi, A.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title (up) String completion of an SU(3)(c) x SU(3)(L) x U(1)(X) electroweak model Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 759 Issue Pages 471-478
Keywords Unification; Branes; String phenomenology; Neutrino mass; Neutron-antineutron oscillations
Abstract The extended electroweak SU(3)(c) circle times SU(3)(L) circle times U(1)(X) symmetry framework “explaining” the number of fermion families is revisited. While 331-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (un)oriented open strings, on Calabi-Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron-antineutron oscillations, with proton decay and other dangerous R-parity violating processes strictly forbidden. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
Address [Addazi, Andrea] Univ Aquila, Dipartimento Fis, I-67010 Coppito, AQ, Italy, Email: andrea.addazi@infn.lngs.it;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000380409200063 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2884
Permanent link to this record
 

 
Author Dong, P.V.; Huong, D.T.; Queiroz, F.S.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title (up) The dark side of flipped trinification Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 143 - 31pp
Keywords Cosmology of Theories beyond the SM; Discrete Symmetries; Gauge Symmetry
Abstract We propose a model which unifies the Left-Right symmetry with the SU(3)L gauge group, called flipped trinification, and based on the SU(3)(C)circle times SU(3)(L)circle times SU(3)(R)circle times U(1)(x) gauge group. The model inherits the interesting features of both symmetries while elegantly explaining the origin of the matter parity, W-p = ( 1)(3(B-L)+/- 2s), and dark matter stability. We develop the details of the spontaneous symmetry breaking mechanism in the model, determining the relevant mass eigenstates, and showing how neutrino masses are easily generated via the seesaw mechanism. Moreover, we introduce viable dark matter candidates, encompassing a fermion, scalar and possibly vector fields, leading to a potentially novel dark matter phenomenology.
Address [Dong, P. V.; Huong, D. T.] Vietnam Acad Sci & Technol, Inst Phys, 10 Dao Tan, Hanoi, Vietnam, Email: pvdong@iop.vast.ac.vn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000432044000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3576
Permanent link to this record
 

 
Author Reig, M.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title (up) Three-family left-right symmetry with low-scale seesaw mechanism Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 100 - 10pp
Keywords Beyond Standard Model; Guage Symmetry; Neutrino Physics
Abstract We suggest a new left-right symmetric model implementing a low-scale see-saw mechanism in which quantum consistency requires three families of fermions. The symmetry breaking route to the Standard Model determines the profile of the “next” expected new physics, characterized either by the simplest left-right gauge symmetry or by the 3-3-1 scenario. The resulting Z' gauge bosons can be probed at the LHC and provide a production portal for the right-handed neutrinos. On the other hand, its flavor changing interactions would affect the K, D and B neutral meson systems.
Address [Reig, Mario; Valle, Jose W. F.; Vaquera-Araujo, C. A.] Univ Valencia, AHEP Grp, CSIC, Inst Fis Corpuscular, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: mareiglo@alumni.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000402841900003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3168
Permanent link to this record