|   | 
Details
   web
Records
Author Di Valentino, E.; Melchiorri, A.; Mena, O.
Title (up) Can interacting dark energy solve the H-0 tension? Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 4 Pages 043503 - 11pp
Keywords
Abstract The answer is yes. We indeed find that interacting dark energy can alleviate the current tension on the value of the Hubble constant H-0 between the cosmic microwave background anisotropies constraints obtained from the Planck satellite and the recent direct measurements reported by Riess et al. 2016. The combination of these two data sets points toward a nonzero dark matter-dark energy coupling. at more than two standard deviations, with xi = -0.26(-0.12)(+0.16) at 95% C.L., i.e. with a moderate evidence for interacting dark energy with an odds ratio of 6:1 respect to a non interacting cosmological constant. However the H-0 tension is better solved when the equation of state of the interacting dark energy component is allowed to freely vary, with a phantomlike equation of state w = -1.185 +/- 0.064 (at 68% C.L.), ruling out the pure cosmological constant case, w = -1, again at more than two standard deviations. When Planck data are combined with external datasets, as BAO, JLA Supernovae Ia luminosity distances, cosmic shear or lensing data, we find perfect consistency with the cosmological constant scenario and no compelling evidence for a dark matter-dark energy coupling.
Address [Di Valentino, Eleonora] CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France, Email: eleonora.di_valentino@iap.fr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000427529900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3517
Permanent link to this record
 

 
Author Ho, S. et al; de Putter, R.; Mena, O.
Title (up) Clustering of Sloan Digital Sky Survey III Photometric Luminous Galaxies: The Measurement, Systematics and Cosmological Implications Type Journal Article
Year 2012 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 761 Issue 1 Pages 14 - 24pp
Keywords cosmological parameters; dark energy; dark matter; distance scale
Abstract The Sloan Digital Sky Survey (SDSS) surveyed 14,555 deg(2), and delivered over a trillion pixels of imaging data. We present a study of galaxy clustering using 900,000 luminous galaxies with photometric redshifts, spanning between z = 0.45 and z = 0.65, constructed from the SDSS using methods described in Ross et al. This data set spans 11,000 deg(2) and probes a volume of 3 h(-3) Gpc(3), making it the largest volume ever used for galaxy clustering measurements. We describe in detail the construction of the survey window function and various systematics affecting our measurement. With such a large volume, high-precision cosmological constraints can be obtained given careful control and understanding of the observational systematics. We present a novel treatment of the observational systematics and its applications to the clustering signals from the data set. In this paper, we measure the angular clustering using an optimal quadratic estimator at four redshift slices with an accuracy of similar to 15%, with a bin size of delta(l) = 10 on scales of the baryon acoustic oscillations (BAOs; at l similar to 40-400). We also apply corrections to the power spectra due to systematics and derive cosmological constraints using the full shape of the power spectra. For a flat Lambda CDM model, when combined with cosmic microwave background Wilkinson Microwave Anisotropy Probe 7 (WMAP7) and H-0 constraints from using 600 Cepheids observed by Wide Field Camera 3 (WFC3; HST), we find Omega(Lambda) = 0.73 +/- 0.019 and H-0 to be 70.5 +/- 1.6 s(-1) Mpc(-1) km. For an open Lambda CDM model, when combined with WMAP7 + HST, we find Omega(K) = 0.0035 +/- 0.0054, improved over WMAP7+HST alone by 40%. For a wCDM model, when combined with WMAP7+HST+ SN, we find w = -1.071 +/- 0.078, and H-0 to be 71.3 +/- 1.7 s(-1) Mpc(-1) km, which is competitive with the latest large-scale structure constraints from large spectroscopic surveys such as the SDSS Data Release 7 (DR7) and WiggleZ. We also find that systematic-corrected power spectra give consistent constraints on cosmological models when compared with pre-systematic correction power spectra in the angular scales of interest. The SDSS-III Data Release 8 (SDSS-III DR8) Angular Clustering Data allow a wide range of investigations into the cosmological model, cosmic expansion (via BAO), Gaussianity of initial conditions, and neutrino masses. Here, we refer to our companion papers for further investigations using the clustering data. Our calculation of the survey selection function, systematics maps, and likelihood function for the COSMOMC package will be released at http://portal.nersc.gov/project/boss/galaxy/photoz/.
Address [Ho, Shirley; White, Martin; Schlegel, David J.; Seljak, Uros; Reid, Beth; Ross, Nicholas P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA, Email: cwho@lbl.gov
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000311748800014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1263
Permanent link to this record
 

 
Author Capozzi, F.; Ferreira, R.Z.; Lopez-Honorez, L.; Mena, O.
Title (up) CMB and Lyman-alpha constraints on dark matter decays to photons Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 060 - 23pp
Keywords reionization; axions; cosmological parameters from CMBR; dark matter theory
Abstract Dark matter energy injection in the early universe modifies both the ionization history and the temperature of the intergalactic medium. In this work, we improve the CMB bounds on sub-keV dark matter and extend previous bounds from Lyman-& alpha; observations to the same mass range, resulting in new and competitive constraints on axion-like particles (ALPs) decaying into two photons. The limits depend on the underlying reionization history, here accounted self-consistently by our modified version of the publicly available DarkHistory and CLASS codes. Future measurements such as the ones from the CMB-S4 experiment may play a crucial, leading role in the search for this type of light dark matter candidates.
Address [Capozzi, Francesco] Univ Aquila, Dipartimento Sci Fis & Chim, I-67100 Laquila, Italy, Email: francesco.capozzi@univaq.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001025410500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5584
Permanent link to this record
 

 
Author Diamanti, R.; Ando, S.; Gariazzo, S.; Mena, O.; Weniger, C.
Title (up) Cold dark matter plus not-so-clumpy dark relics Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 008 - 17pp
Keywords cosmological parameters from CMBR; dark matter theory; dwarfs galaxies; particle physics – cosmology connection
Abstract Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f(ncdm) of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2 sigma limits for non-cold dark matter particles with masses in the range 1-10 keV are f(ncdm) <= 0.29 (0.23) for fermions (bosons), and for masses in the 10-100 keV range they are f(ncdm) <= 0.43 (0.45), respectively.
Address [Diamanti, Roberta; Ando, Shin'ichiro; Weniger, Christoph] Univ Amsterdam, Inst Phys, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands, Email: r.diamanti@uva.nl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000403482400010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3174
Permanent link to this record
 

 
Author Stadler, J.; Boehm, C.; Mena, O.
Title (up) Comprehensive study of neutrino-dark matter mixed damping Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 014 - 23pp
Keywords CMBR theory; cosmological perturbation theory; neutrino properties; power spectrum
Abstract Mixed damping is a physical effect that occurs when a heavy species is coupled to a relativistic fluid which is itself free streaming. As a cross-case between collisional damping and free-streaming, it is crucial in the context of neutrino-dark matter interactions. In this work, we establish the parameter space relevant for mixed damping, and we derive an analytical approximation for the evolution of dark matter perturbations in the mixed damping regime to illustrate the physical processes responsible for the suppression of cosmological perturbations. Although extended Boltzmann codes implementing neutrino-dark matter scattering terms automatically include mixed damping, this effect has not been systematically studied. In order to obtain reliable numerical results, it is mandatory to reconsider several aspects of neutrino-dark matter interactions, such as the initial conditions, the ultra-relativistic fluid approximation and high order multiple moments in the neutrino distribution. Such a precise treatment ensures the correct assessment of the relevance of mixed damping in neutrino-dark matter interactions.
Address [Stadler, Julia] Univ Durham, Inst Particle Phys Phenomenol, South Rd, Durham DH1 3LE, England, Email: julia.j.stadler@durham.ac.uk;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000481534700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4111
Permanent link to this record