|   | 
Details
   web
Records
Author Penalva, N.; Hernandez, E.; Nieves, J.
Title (up) New physics and the tau polarization vector in b -> c tau barnutau decays Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 118 - 37pp
Keywords Beyond Standard Model; CP violation
Abstract For a general H-b -> Hc tau nu <overbar></mml:mover>tau decay we analyze the role of the tau polarization vector P μin the context of lepton flavor universality violation studies. We use a general phenomenological approach that includes, in addition to the Standard Model (SM) contribution, vector, axial, scalar, pseudoscalar and tensor new physics (NP) terms which strength is governed by, complex in general, Wilson coefficients. We show that both in the laboratory frame, where the initial hadron is at rest, and in the center of mass of the two final leptons, a P -></mml:mover> component perpendicular to the plane defined by the three-momenta of the final hadron and the tau lepton is only possible for complex Wilson coefficients, being a clear signal for physics beyond the SM as well as time reversal (or CP-symmetry) violation. We make specific evaluations of the different polarization vector components for the Lambda (b) -> Lambda (c), <mml:mover accent=“true”>B<mml:mo stretchy=“true”><overbar></mml:mover>c -> eta (c), J/psi and <mml:mover accent=“true”>B<mml:mo stretchy=“true”><overbar></mml:mover> -> D-(*) semileptonic decays, and describe NP effects in the complete two-dimensional space associated with the independent kinematic variables on which the polarization vector depends. We find that the detailed study of P μhas great potential to discriminate between different NP scenarios for 0(-) -> 0(-) decays, but also for Lambda (b) -> Lambda (c) transitions. For this latter reaction, we pay special attention to corrections to the SM predictions derived from complex Wilson coefficients contributions.
Address [Penalva, Neus; Nieves, Juan] Ctr Mixto CSIC UV, Inst Invest Paterna, Inst Fis Corpuscular, Apartado 22085, Valencia 46071, Spain, Email: Neus.Penalva@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000664505100002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4882
Permanent link to this record
 

 
Author Du, M.L.; Penalva, N.; Hernandez, E.; Nieves, J.
Title (up) New physics effects on Lambda(b) -> Lambda(c)*tau(nu)over-bar(tau) decays Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 5 Pages 055039 - 21pp
Keywords
Abstract We benefit from a recent lattice determination of the full set of vector, axial and tensor form factors for the Lambda(b) -> Lambda(c)* (2595)tau(nu) over bar (tau) and Lambda(c) (2625)tau(nu) over bar (tau) semileptonic decays to study the possible role of these two reactions in lepton flavor universality violation studies. Using an effective theory approach, we analyze different observables that can be accessed through the visible kinematics of the charged particles produced in the tau decay, for which we consider the pi(-)nu(tau), rho(-) nu(tau) and mu(-)(nu) over bar (mu)nu(tau) channels. We compare the results obtained in the Standard Model and other schemes containing new physics (NP) interactions, with either left-handed or right-handed neutrino operators. We find a discriminating power between models similar to the one of the Lambda(b) -> Lambda(c) decay, although somewhat hindered in this case by the larger errors of the Lambda(b) -> Lambda(c)* lattice form factors. Notwithstanding this, the analysis of these reactions is already able to discriminate between some of the NP scenarios and its potentiality will certainly improve when more precise form factors are available.
Address [Du, Meng-Lin; Penalva, Neus; Nieves, Juan] Inst Fis Corpuscular Ctr Mixto CSIC UV, Inst Invest Paterna, C Catedrat Jose Beltran 2, E-46980 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000870152800009 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5401
Permanent link to this record
 

 
Author Kaskulov, M.; Hernandez, E.; Oset, E.
Title (up) On the background in the gamma p -> omega(pi(0)gamma)p reaction and mixed event simulation Type Journal Article
Year 2010 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 46 Issue 2 Pages 223-230
Keywords
Abstract In this paper we evaluate sources of background of the gamma p -> omega p reaction, with the omega detected through its pi(0)gamma decay channel, to compare with the experiment carried out at ELSA. We find background from gamma p -> pi(0)pi(0)p followed by decay of a pi(0) into two gamma, recombining one pi(0) and one gamma, and from the gamma p -> pi(0)eta p reaction with subsequent decay of the eta into two photons. This background accounts for the data at pi(0)gamma invariant masses beyond 700 MeV, but strength is missing at lower invariant masses which was attributed to photon misidentification events, which we simulate to get a good reproduction of the experimental background. Once this is done, we perform an event mixing simulation to reproduce the calculated background and we find that the method provides a good description of the background. A closer look reveals this is accidental. We show that the mixed event generated background in the region of the omega mass and beyond is completely tied to the events at low pi(0)gamma invariant masses where the d sigma/dM(pi 0 gamma) distribution is much larger. This has as a consequence that the mixed event method produces the same background at high invariant masses independently of the actual background in that region, as a consequence of which, the method is unsuited to give the background at energies around the peak of the omega and beyond.
Address [Kaskulov, M.] Univ Giessen, Inst Theoret Phys, D-35392 Giessen, Germany, Email: murat.kaskulov@theo.physik.uni-giessen.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes ISI:000284869600008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 313
Permanent link to this record
 

 
Author Hernandez, E.; Nieves, J.; Vicente Vacas, M.J.
Title (up) Single pion production in neutrino-nucleus scattering Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 87 Issue 11 Pages 113009 - 11pp
Keywords
Abstract We study 1 pi production in both charged and neutral current neutrino-nucleus scattering for neutrino energies below 2 GeV. We use a theoretical model for one pion production at the nucleon level that we correct for medium effects. The results are incorporated into a cascade program that apart from production also includes the pion final state interaction inside the nucleus. Besides, in some specific channels coherent pi production is also possible and we evaluate its contribution as well. Our results for total and differential cross sections are compared with recent data from the MiniBooNE Collaboration. The model provides an overall acceptable description of the data, better for neutral-current than for charged-current channels, although the theory is systematically below the data. Differential cross sections, folded with the full neutrino flux, show that most of the missing pions lie in the forward direction and at high energies.
Address [Hernandez, E.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000320769600004 Approved no
Is ISI yes International Collaboration
Call Number IFIC @ pastor @ Serial 1485
Permanent link to this record
 

 
Author Hernandez, E.; Vijande, J.; Valcarce, A.; Richard, J.M.
Title (up) Spectroscopy, lifetime and decay modes of the T-bb(-) tetraquark Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 800 Issue Pages 135073 - 9pp
Keywords
Abstract We present the first full-fledged study of the flavor-exotic isoscalar T-bb(-) equivalent to bb (u) over bar(d) over bar tetraquark with spin and parity J(P) = 1(+). We report accurate solutions of the four-body problem in a quark model, characterizing the structure of the state as a function of the ratio M-Q/m(q) of the heavy to light quark masses. For such a standard constituent model, T-bb(-) lies approximately 150 MeV below the strong decay threshold B- (B) over bar*(0) and 105 MeV below the electromagnetic decay threshold B- (B) over bar (0)gamma. We evaluate the lifetime of T-bb(-), identifying the promising decay modes where the tetraquark might be looked for in future experiments. Its total decay width is Gamma approximate to 87 x 10(-15) GeV and therefore its lifetime tau approximate to 7.6 ps. The promising final states are B*(-) D*(+) l (v) over bar (l) and (B) over bar*(0) l (v) over bar (l) among the semileptonic decays, and B*(-) D*(+) D-s*(-), (B) over bar*(0) D*(0) D-s*(-), and B*(-) D*(+) rho(-) among the nonleptonic ones. The semileptonic decay to the isoscalar J(P) = 0(+) tetraquark T-bc(0) is also relevant but it is not found to be dominant. There is a broad consensus about the existence of this tetraquark, and its detection will validate our understanding of the low-energy realizations of Quantum Chromodynamics (QCD) in the multiquark sector.
Address [Hernandez, E.; Valcarce, A.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: gajatee@usal.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000503832500055 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4240
Permanent link to this record