|   | 
Details
   web
Records
Author Binosi, D.; Ibañez, D.; Papavassiliou, J.
Title (up) Nonperturbative study of the four gluon vertex Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 059 - 32pp
Keywords Nonperturbative Effects; QCD; Confinement
Abstract In this paper we study the nonperturbative structure of the SU(3) four-gluon vertex in the Landau gauge, concentrating on contributions quadratic in the metric. We employ an approximation scheme where “one-loop” diagrams are computed using fully dressed gluon and ghost propagators, and tree-level vertices. When a suitable kinematical configuration depending on a single momentum scale p is chosen, only two structures emerge: the tree-level four-gluon vertex, and a tensor orthogonal to it. A detailed numerical analysis reveals that the form factor associated with this latter tensor displays a change of sign (zero-crossing) in the deep infrared, and finally diverges logarithmically. The origin of this characteristic behavior is proven to be entirely due to the masslessness of the ghost propagators forming the corresponding ghost-loop diagram, in close analogy to a similar effect established for the three-gluon vertex. However, in the case at hand, and under the approximations employed, this particular divergence does not affect the form factor proportional to the tree-level tensor, which remains finite in the entire range of momenta, and deviates moderately from its naive tree-level value. It turns out that the kinematic configuration chosen is ideal for carrying out lattice simulations, because it eliminates from the connected Green's function all one-particle reducible contributions, projecting out the genuine one-particle irreducible vertex. Motivated by this possibility, we discuss in detail how a hypothetical lattice measurement of this quantity would compare to the results presented here, and the potential interference from an additional tensorial structure, allowed by Bose symmetry, but not encountered within our scheme.
Address [Binosi, D.; Ibanez, D.] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, TN, Italy, Email: binosi@ectstar.eu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000342215400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1954
Permanent link to this record
 

 
Author Athenodorou, A.; Binosi, D.; Boucaud, P.; De Soto, F.; Papavassiliou, J.; Rodriguez-Quintero, J.; Zafeiropoulos, S.
Title (up) On the zero crossing of the three-gluon vertex Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 761 Issue Pages 444-449
Keywords Lattice simulations; Three-gluon vertex; Zero crossing; Schwinger-Dyson equations
Abstract We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.
Address [Athenodorou, A.] Univ Cyprus, Dept Phys, POB 20537, CY-1678 Nicosia, Cyprus, Email: binosi@ectstar.eu
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000384469900063 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2939
Permanent link to this record
 

 
Author Binosi, D.; Mezrag, C.; Papavassiliou, J.; Roberts, C.D.; Rodriguez-Quintero, J.
Title (up) Process-independent strong running coupling Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 5 Pages 054026 - 7pp
Keywords
Abstract We unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann-Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. This reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann-Low effective charge.
Address [Binosi, Daniele] European Ctr Theoret Studies Nucl Phys & Related, Str Tabarelle 286, I-38123 Villazzano, Trentino, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000411579700005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3317
Permanent link to this record
 

 
Author Binosi, D.; Ibañez, D.; Papavassiliou, J.
Title (up) QCD effective charge from the three-gluon vertex of the background-field method Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 87 Issue 12 Pages 125026 - 10pp
Keywords
Abstract In this article we study in detail the prospects of determining the infrared finite QCD effective charge from a special kinematic limit of the vertex function corresponding to three background gluons. This particular Green's function satisfies a QED-like Ward identity, relating it to the gluon propagator, with no reference to the ghost sector. Consequently, its longitudinal form factors may be expressed entirely in terms of the corresponding gluon wave function, whose inverse is proportional to the effective charge. After reviewing certain important theoretical properties, we consider a typical lattice quantity involving this vertex, and derive its exact dependence on the various form factors, for arbitrary momenta. We then focus on the particular momentum configuration that eliminates any dependence on the (unknown) transverse form factors, projecting out only the desired quantity. A preliminary numerical analysis indicates that the effective charge is relatively insensitive to the numerical uncertainties that may afflict future simulations of the aforementioned lattice quantity. The numerical difficulties associated with a parallel determination of the dynamical gluon mass are briefly discussed.
Address [Binosi, D.] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, Trento, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000320609200011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1490
Permanent link to this record
 

 
Author Aguilar, A.C.; Binosi, D.; Papavassiliou, J.
Title (up) QCD effective charges from lattice data Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 002 - 24pp
Keywords Nonperturbative Effects; QCD
Abstract We use recent lattice data on the gluon and ghost propagators, as well as the Kugo-Ojima function, in order to extract the non-perturbative behavior of two particular definitions of the QCD effective charge, one based on the pinch technique construction, and one obtained from the standard ghost-gluon vertex. The construction relies crucially on the definition of two dimensionful quantities, which are invariant under the renormalization group, and are built out of very particular combinations of the aforementioned Green's functions. The main non-perturbative feature of both effective charges, encoded in the infrared finiteness of the gluon propagator and ghost dressing function used in their definition, is the freezing at a common finite (non-vanishing) value, in agreement with a plethora of theoretical and phenomenological expectations. We discuss the sizable discrepancy between the freezing values obtained from the present lattice analysis and the corresponding estimates derived from several phenomenological studies, and attribute its origin to the difference in the gauges employed. A particular toy calculation suggests that the modifications induced to the non-perturbative gluon propagator by the gauge choice may indeed account for the observed deviation of the freezing values.
Address [Aguilar, A. C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil, Email: arlene.aguilar@ufabc.edu.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000281504500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 384
Permanent link to this record