|   | 
Details
   web
Records
Author AGATA Collaboration (Kaya, L. et al); Gadea, A.
Title (up) High-spin structure in the transitional nucleus Xe-131: Competitive neutron and proton alignment in the vicinity of the N=82 shell closure Type Journal Article
Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 98 Issue 1 Pages 014309 - 19pp
Keywords
Abstract The transitional nucleus Xe-131 is investigated after multinucleon transfer in the Xe-136 + Pb-208 and Xe-136 +U-238 reactions employing the high-resolution Advanced gamma-Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy, and as an elusive reaction product in the fusion-evaporation reaction Sn-124(B-11) ,p3n)Xe-131 employing the High-efficiency Observatory for gamma-Ray Unique Spectroscopy (HORUS) gamma-ray array coupled to a double-sided silicon strip detector at the University of Cologne, Germany. The level scheme of Xe-131 is extended to 5 MeV. A pronounced backbending is observed at (h) over bar omega approximate to 0.4 MeV along the negative-parity one-quasiparticle vh(11/12)(alpha = -1/2) band. The results are compared to the high-spin systematics of the Z = 54 isotopes and the N = 77 isotones. Large-scale shell-model calculations employing the PQM130, SN100PN, GCN50:82, SN100-KTH, and a realistic effective interaction reproduce the experimental findings and provide guidance to elucidate the structure of the high-spin states. Further calculations in Xe129-132 provide insight into the changing nuclear structure along the Xe chain towards the N = 82 shell closure. Proton occupancy in the pi 0h(11/2) orbital is found to be decisive for the description of the observed backbending phenomenon.
Address [Kaya, L.; Vogt, A.; Reiter, P.; Birkenbach, B.; Blazhev, A.; Arnswald, K.; Eberth, J.; Fransen, C.; Fu, B.; Hess, H.; Hetzenegger, R.; Hirsch, R.; Jolie, J.; Lewandowski, L.; Mueller-Gatermann, C.; Queiser, M.; Rosiak, D.; Saed-Samii, N.; Schneiders, D.; Seidlitz, M.; Siebeck, B.; Steinbach, T.; Wolf, K.; Zell, K. O.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany, Email: levent.kaya@ikp.uni-koeln.de
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000437737600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3650
Permanent link to this record
 

 
Author AGATA Collaboration (Vogt, A. et al); Gadea, A.
Title (up) High-spin structure of Xe-134 Type Journal Article
Year 2016 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 93 Issue 5 Pages 054325 - 12pp
Keywords
Abstract Detailed spectroscopic information on the N similar to 82 nuclei is necessary to benchmark shell-model calculations in the region. The nuclear structure above long-lived isomers in Xe-134 is investigated after multinucleon transfer (MNT) and actinide fission. Xenon-134 was populated as (i) a transfer product in Xe-136 + U-238 and Xe-136 + Pb-208 MNT reactions and (ii) as a fission product in the Xe-136 + U-238 reaction employing the high-resolution Advanced Gamma Tracking Array (AGATA). Trajectory reconstruction has been applied for the complete identification of beamlike transfer products with the magnetic spectrometer PRISMA. The Xe-136 + Pt-198 MNT reaction was studied with the gamma-ray spectrometer GAMMASPHERE in combination with the gas detector array Compact Heavy Ion Counter (CHICO). Several high-spin states in Xe-134 on top of the two long-lived isomers are discovered based on gamma gamma-coincidence relationships and information on the gamma-ray angular distributions as well as excitation energies from the total kinetic energy loss and fission fragments. The revised level scheme of Xe-134 is extended up to an
Address [Vogt, A.; Birkenbach, B.; Reiter, P.; Blazhev, A.; Eberth, J.; Geibel, K.; Hess, H.; Jolie, J.; Radeck, F.; Steinbach, T.; Wiens, A.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany, Email: andreas.vogt@ikp.uni-koeln.de
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000376640000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2688
Permanent link to this record
 

 
Author AGATA Collaboration (Vogt, A. et al); Gadea, A.
Title (up) High-spin structures in Xe-132 and Xe-133 and evidence for isomers along the N=79 isotones Type Journal Article
Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 96 Issue 2 Pages 024321 - 14pp
Keywords
Abstract The transitional nuclei Xe-132 and Xe-133 are investigated after multinucleon-transfer (MNT) and fusionevaporation reactions. Both nuclei are populated (i) in Xe-136 + 2(08P)b MNT reactions employing the highresolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA, (ii) in the Xe-136 + Pt-198 MNT reaction employing the GAMMASPHERE spectrometer in combination with the gas-detector array CHICO, and (iii) as an evaporation residue after a Te-130(alpha, xn) Xe134-xn fusion-evaporation reaction employing the HORUS gamma-ray array at the University of Cologne. The high-spin level schemes are considerably extended above the J(pi) = (7(-)) and (10+) isomers in Xe-132 and above the 11/2(-) isomer in Xe-133. The results are compared to the high-spin systematics of the Z = 54 as well as the N = 78 and N = 79 chains. Furthermore, evidence is found for a long-lived (T-1/2 >> μs) isomer in Xe-133 which closes a gap along the N = isotones. Shell-model calculations employing the SN100PN and PQM130 effective interactions reproduce the experimental findings and provide guidance to the interpretation of the observed high-spin features.
Address [Vogt, A.; Birkenbach, B.; Reiter, P.; Arnswald, K.; Blazhev, A.; Eberth, J.; Fransen, C.; Fu, B.; Hess, H.; Hetzenegger, R.; Hirsch, R.; Jolie, J.; Karayonchev, V.; Kaya, L.; Mueller-Gatermann, C.; Queiser, M.; Regis, J. -M.; Saed-Samii, N.; Seidlitz, M.; Siebeck, B.; Wolf, K.; Zell, K. O.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany, Email: andreas.vogt@ikp.uni-koeln.de
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000408346100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3252
Permanent link to this record
 

 
Author AGATA Collaboration (Kaya, L. et al); Gadea, A.
Title (up) Identification of high-spin proton configurations in Ba-136 and Ba-137 Type Journal Article
Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 99 Issue 1 Pages 014301 - 19pp
Keywords
Abstract The high-spin structures of Ba-136 and Ba-137 are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Ba-136 is populated in a Xe-136 + U-238 MNT reaction employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy, and in two Be-9 + Te-130 fusion-evaporation reactions using the High-efficiency Observatory for gamma-Ray Unique Spectroscopy (HORUS) at the FN tandem accelerator of the University of Cologne, Germany. Furthermore, both isotopes are populated in an elusive reaction channel in the B-11 + Te-130 fusion-evaporation reaction utilizing the HORUS gamma-ray array. The level scheme above the J(pi) = 10(+) isomer in Ba-136 is revised and extended up to an excitation energy of approximately 5.5 MeV. From the results of angular-correlation measurements, the E-x = 3707- and E-x = 4920-keV states are identified as the bandheads of positive- and negative-parity cascades. While the high-spin regimes of both Te-132 and Xe-134 are characterized by high-energy 12(+) -> 10(+) transitions, the Ba-136 E2 ground-state band is interrupted by negative-parity states only a few hundred keV above the J(pi) = 10(+) isomer. Furthermore, spins are established for several hitherto unassigned high-spin states in Ba-137. The new results close a gap along the high-spin structure of N < 82 Ba isotopes. Experimental results are compared to large-scale shell-model calculations employing the GCN50:82, Realistic SM, PQM130, and SN100PN interactions. The calculations suggest that the bandheads of the positive-parity bands in both isotopes are predominantly of proton character.
Address [Kaya, L.; Vogt, A.; Reiter, P.; Mueller-Gatermann, C.; Blazhev, A.; Arnswald, K.; Birkenbach, B.; Droste, M.; Eberth, J.; Fransen, C.; Hess, H.; Hetzenegger, R.; Hirsch, R.; Jolie, J.; Lewandowski, L.; Rosiak, D.; Saed-Samii, N.; Seidlitz, M.; Weinert, M.; Wolf, K.; Zell, K. O.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany, Email: levent.kaya@ikp.uni-koeln.de
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000454768000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3859
Permanent link to this record
 

 
Author AGATA Collaboration (John, P.R. et al); Gadea, A.
Title (up) In-beam gamma-ray spectroscopy of the neutron-rich platinum isotope Pt-200 toward the N=126 shell gap Type Journal Article
Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 95 Issue 6 Pages 064321 - 8pp
Keywords
Abstract The neutron-rich nucleus Pt-200 is investigated via in-beam gamma-ray spectroscopy to study the shape evolution in the neutron-rich platinum isotopes towards the N = 126 shell closure. The two-neutron transfer reaction Pt-198(Se-82, Se-80)Pt-200 is used to populate excited states of Pt-200. The Advanced Gamma Ray Tracking Array (AGATA) demonstrator coupled with the PRISMA spectrometer detects gamma rays coincident with the Se-80 recoils, the binary partner of Pt-200. The binary partner method is applied to extract the gamma-ray transitions and build the level scheme of Pt-200. The level at 1884 keV reported by Yates et al. [S. W. Yates, E. M. Baum, E. A. Henry, L. G. Mann, N. Roy, A. Aprahamian, R. A. Meyer, and R. Estep, Phys. Rev. C 37, 1889 (1988)] was confirmed to be at 1882.1 keV and assigned as the (6(1)(+)) state. An additional gamma ray was found and it presumably deexcites the (8(1)(+)) state. The results are compared with state-of-the-art beyond mean-field calculations, performed for the even-even Pt190-204 isotopes, revealing that Pt-200 marks the transition from the gamma-unstable behavior of lighter Pt nuclei towards a more spherical one when approaching the N = 126 shell closure.
Address [John, P. R.; Mengoni, D.; Lunardi, S.; Gottardo, A.; Lenzi, S.; Menegazzo, R.; Michelagnoli, C.; Montagnoli, G.; Montanari, D.; Recchia, F.; Scarlassara, F.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy, Email: philipp.john@ikp.tu-darmstadt.de
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000404021900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3178
Permanent link to this record