Barenboim, G., & Park, W. I. (2017). Impact of CP-violation on neutrino lepton number asymmetries revisited. Phys. Lett. B, 765, 371–376.
Abstract: We revisit the effect of the (Dirac) CP-violating phase on neutrino lepton number asymmetries in both mass- and flavor-basis. We found that, even if there are sizable effects on muon- and tau-neutrino asymmetries, the effect on the asymmetry of electron-neutrinos is at most similar to the upper bound set by BBN for initial neutrino degeneracy parameters smaller than order unity. We also found that, for the asymmetries in mass-basis, the changes caused by CP-violation is of sub-% level which is unlikely to be accessible neither in the current nor in the forthcoming experiments.
|
Watanabe, H. et al, & Montaner-Piza, A. (2021). Impact of shell evolution on Gamow-Teller beta decay from a high-spin long-lived isomer in Ag-127. Phys. Lett. B, 823, 136766–6pp.
Abstract: The change of the shell structure in atomic nuclei, so-called “nuclear shell evolution”, occurs due to changes of major configurations through particle-hole excitations inside one nucleus, as well as due to variation of the number of constituent protons or neutrons. We have investigated how the shell evolution affects Gamow-Teller (GT) transitions that dominate the beta decay in the region below Sn-132 using the newly obtained experimental data on a long-lived isomer in Ag-127. The T-1/2 = 67.5(9) ms isomer has been identified with a spin and parity of (27/2(+)) at an excitation energy of 1942(-20)(+14) keV, and found to decay via an internal transition of an E3 character, which competes with the dominant beta-decay branches towards the high-spin states in Cd-127. The underlying mechanism of a strong GT transition from the Ag-127 isomer is discussed in terms of configuration-dependent optimization of the effective single-particle energies in the framework of a shell-model approach.
|
Bartl, A., Eberl, H., Herrmann, B., Hidaka, K., Majerotto, W., & Porod, W. (2011). Impact of squark generation mixing on the search for squarks decaying into fermions at LHC. Phys. Lett. B, 698(5), 380–388.
Abstract: We study the effect of squark generation mixing on squark production and decays at LHC in the Minimal Supersymmetric Standard Model (MSSM). We show that the effect can be very large despite the very strong constraints on quark-flavour violation (QFV) from experimental data on B mesons. We find that the two lightest up-type squarks (u) over bar (1.2) can have large branching ratios for the decays into c (chi) over bar (0)(1) and t (chi) over bar (0)(1) at the same time due to squark generation mixing, leading to QFV signals 'pp -> c (t) over bar (t (c) over bar) + missing-E-T + X' with a significant rate. The observation of this remarkable signature would provide a powerful test of supersymmetric QFV at LHC. This could have a significant impact on the search for squarks and the determination of the underlying MSSM parameters.
|
Roca, L., Liang, W. H., & Oset, E. (2022). Inconsistency of the data on the K-1(1270) -> pi K-0*(1430) decay width. Phys. Lett. B, 824, 136827–3pp.
Abstract: We show, using the same Lagrangian for the K-1(1270) -> pi K-0*(1430) and K-0*(1430) -> K-1 (1270)pi decays, that the present PDG data on the partial decay width of K-1 (1270) -> pi K-0*(1430) implies a width for K-0*(1430) -> K-1 (1270)pi decay which is about one order of magnitude larger than the total K-0*(1430) width. A discussion on this inconsistency is done, stressing its relationship to the existence of two K-1(1270) states obtained with the chiral unitary theory, which are not considered in the experimental analyses of K pi pi data.
|
Aguilar, A. C., De Soto, F., Ferreira, M. N., Papavassiliou, J., & Rodriguez-Quintero, J. (2021). Infrared facets of the three-gluon vertex. Phys. Lett. B, 818, 136352–7pp.
Abstract: We present novel lattice results for the form factors of the quenched three-gluon vertex of QCD, in two special kinematic configurations that depend on a single momentum scale. We consider three form factors, two associated with a classical tensor structure and one without tree-level counterpart, exhibiting markedly different infrared behaviors. Specifically, while the former display the typical suppression driven by a negative logarithmic singularity at the origin, the latter saturates at a small negative constant. These exceptional features are analyzed within the Schwinger-Dyson framework, with the aid of special relations obtained from the Slavnov-Taylor identities of the theory. The emerging picture of the underlying dynamics is thoroughly corroborated by the lattice results, both qualitatively as well as quantitatively.
|