|   | 
Details
   web
Records
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.
Title (up) Angular Analysis of D0 -> x plus x-mu plus mu- and D0 -> K plus K-mu plus mu- Decays and Search for CP Violation Type Journal Article
Year 2022 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 128 Issue 22 Pages 221801 - 11pp
Keywords
Abstract The first full angular analysis and an updated measurement of the decay-rate CP asymmetry of the D0→π+π−μ+μ− and D0→K+K−μ+μ− decays are reported. The analysis uses proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7, 8 and 13 TeV. The data set corresponds to an integrated luminosity of 9 fb−1. The full set of CP-averaged angular observables and their CP asymmetries are measured as a function of the dimuon invariant mass. The results are consistent with expectations from the standard model and with CP symmetry.
Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Falcao, L. N.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000811308400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5267
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.
Title (up) Angular Analysis of the B+ -> K*(+)mu(+) mu(-) Decay Type Journal Article
Year 2021 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 126 Issue 16 Pages 161802 - 11pp
Keywords
Abstract We present an angular analysis of the B+ -> K*(+)(-> K-S(0)pi(+))mu(+) mu(-) decay using 9 fb(-1) of pp collision data collected with the LHCb experiment. For the first time, the full set of CP-averaged angular observables is measured in intervals of the dimuon invariant mass squared. Local deviations from standard model predictions are observed, similar to those in previous LHCb analyses of the isospin-partner B-0 -> K*(0)mu(+)mu(-) decay. The global tension is dependent on which effective couplings are considered and on the choice of theory nuisance parameters.
Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000652829600007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4841
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.
Title (up) Angular analysis of the rare decay B-s(0) -> phi mu(+)mu(-) Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 043 - 45pp
Keywords B physics; FCNC Interaction; Flavor physics; Hadron-Hadron scattering (experiments); Rare decay
Abstract An angular analysis of the rare decay B-s(0) -> phi mu(+)mu(-) is presented, using proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7, 8 and 13TeV, corresponding to an integrated luminosity of 8.4 fb(-1). The observables describing the angular distributions of the decay B-s(0) -> phi mu(+)mu(-) are determined in regions of q(2), the square of the dimuon invariant mass. The results are consistent with Standard Model predictions.
Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: marcel.materok@rwth-aachen.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000716428600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5018
Permanent link to this record
 

 
Author Wilson, J.N. et al; Algora, A.
Title (up) Angular momentum generation in nuclear fission Type Journal Article
Year 2021 Publication Nature Abbreviated Journal Nature
Volume 590 Issue 7847 Pages 566-570
Keywords
Abstract When a heavy atomic nucleus splits (fission), the resulting fragments are observed to emerge spinning(1); this phenomenon has been a mystery in nuclear physics for over 40 years(2,3). The internal generation of typically six or seven units of angular momentum in each fragment is particularly puzzling for systems that start with zero, or almost zero, spin. There are currently no experimental observations that enable decisive discrimination between the many competing theories for the mechanism that generates the angular momentum(4-12). Nevertheless, the consensus is that excitation of collective vibrational modes generates the intrinsic spin before the nucleus splits (pre-scission). Here we show that there is no significant correlation between the spins of the fragment partners, which leads us to conclude that angular momentum in fission is actually generated after the nucleus splits (post-scission). We present comprehensive data showing that the average spin is strongly mass-dependent, varying in saw-tooth distributions. We observe no notable dependence of fragment spin on the mass or charge of the partner nucleus, confirming the uncorrelated post-scission nature of the spin mechanism. To explain these observations, we propose that the collective motion of nucleons in the ruptured neck of the fissioning system generates two independent torques, analogous to the snapping of an elastic band. A parameterization based on occupation of angular momentum states according to statistical theory describes the full range of experimental data well. This insight into the role of spin in nuclear fission is not only important for the fundamental understanding and theoretical description of fission, but also has consequences for the gamma-ray heating problem in nuclear reactors(13,14), for the study of the structure of neutron-rich isotopes(15,16), and for the synthesis and stability of super-heavy elements(17,18). gamma-ray spectroscopy experiments on the origin of spin in the products of nuclear fission of spin-zero nuclei suggest that the fission fragments acquire their spin after scission, rather than before.
Address [Wilson, J. N.; Thisse, D.; Lebois, M.; Jovancevic, N.; Adsley, P.; Babo, M.; Chakma, R.; Delafosse, C.; Haefner, G.; Hauschild, K.; Ibrahim, F.; Ljungvall, J.; Lopez-Martens, A.; Lozeva, R.; Matea, I; Nemer, J.; Popovitch, Y.; Qi, L.; Tocabens, G.; Verney, D.] Univ Paris Saclay, IJC Lab, CNRS, IN2P3, Orsay, France, Email: jonathan.wilson@ijclab.in2p3.fr
Corporate Author Thesis
Publisher Nature Research Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes WOS:000621583600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4717
Permanent link to this record
 

 
Author Beltran Jimenez, J.; de Andres, D.; Delhom, A.
Title (up) Anisotropic deformations in a class of projectively-invariant metric-affine theories of gravity Type Journal Article
Year 2020 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 37 Issue 22 Pages 225013 - 25pp
Keywords alternative theories of gravity; metric-affine gravity; anisotropic solutions
Abstract Among the general class of metric-affine theories of gravity, there is a special class conformed by those endowed with a projective symmetry. Perhaps the simplest manner to realise this symmetry is by constructing the action in terms of the symmetric part of the Ricci tensor. In these theories, the connection can be solved algebraically in terms of a metric that relates to the spacetime metric by means of the so-called deformation matrix that is given in terms of the matter fields. In most phenomenological applications, this deformation matrix is assumed to inherit the symmetries of the matter sector so that in the presence of an isotropic energy-momentum tensor, it respects isotropy. In this work we discuss this condition and, in particular, we show how the deformation matrix can be anisotropic even in the presence of isotropic sources due to the non-linear nature of the equations. Remarkably, we find that Eddington-inspired-Born-Infeld (EiBI) theories do not admit anisotropic deformations, but more general theories do. However, we find that the anisotropic branches of solutions are generally prone to a pathological physical behaviour.
Address [Jimenez, Jose Beltran] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: jose.beltran@usal.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000580878200001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4576
Permanent link to this record
 

 
Author Khosa, C.K.; Sanz, V.
Title (up) Anomaly Awareness Type Journal Article
Year 2023 Publication Scipost Physics Abbreviated Journal SciPost Phys.
Volume 15 Issue 2 Pages 053 - 24pp
Keywords
Abstract We present a new algorithm for anomaly detection called Anomaly Awareness. The algorithm learns about normal events while being made aware of the anomalies through a modification of the cost function. We show how this method works in different Particle Physics situations and in standard Computer Vision tasks. For example, we apply the method to images from a Fat Jet topology generated by Standard Model Top and QCD events, and test it against an array of new physics scenarios, including Higgs production with EFT effects and resonances decaying into two, three or four subjets. We find that the algorithm is effective identifying anomalies not seen before, and becomes robust as we make it aware of a varied-enough set of anomalies.
Address [Khosa, Charanjit K.] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, England
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Medium
Area Expedition Conference
Notes WOS:001048488200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5610
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Costa, M.J.; Didenko,, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M.
Title (up) Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle X in hadronic final states using √s=13 TeV pp collisions with the ATLAS detector Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 5 Pages 052009 - 33pp
Keywords
Abstract A search is presented for a heavy resonance Y decaying into a Standard Model Higgs boson H and a new particle X in a fully hadronic final state. The full Large Hadron Collider run 2 dataset of proton-proton collisions at root s =13 TeV collected by the ATLAS detector from 2015 to 2018 is used and corresponds to an integrated luminosity of 139 fb(-1). The search targets the high Y-mass region, where the H and X have a significant Lorentz boost in the laboratory frame. A novel application of anomaly detection is used to define a general signal region, where events are selected solely because of their incompatibility with a learned background-only model. It is constructed using a jet-level tagger for signal-model-independent selection of the boosted X particle, representing the first application of fully unsupervised machine learning to an ATLAS analysis. Two additional signal regions are implemented to target a benchmark X decay into two quarks, covering topologies where the X is reconstructed as either a single large-radius jet or two small-radius jets. The analysis selects Higgs boson decays into bb, and a dedicated neural-network-based tagger provides sensitivity to the boosted heavy-flavor topology. No significant excess of data over the expected background is observed, and the results are presented as upper limits on the production cross section sigma(pp -> Y -> XH -> qqbb) for signals with m(Y) between 1.5 and 6 TeV and m(X) between 65 and 3000 GeV.
Address [Filmer, E. K.; Jackson, P.; Kong, A. X. Y.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001088448300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5797
Permanent link to this record
 

 
Author Chakraborty, S.; Gupta, A.; Vanvlasselaer, M.
Title (up) Anomaly induced cooling of neutron stars: a Standard Model contribution Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 030 - 23pp
Keywords neutron stars; neutrino theory
Abstract Young neutron stars cool via the emission of neutrinos from their core. A precise understanding of all the different processes producing neutrinos in the hot and degenerate matter is essential for assessing the cooling rate of such stars. The main Standard Model processes contributing to this effect are nu bremsstrahlung, mURCA among others. In this paper, we investigate another Standard Model process initiated by the Wess-Zumino-Witten term, leading to the emission of neutrino pairs via N gamma -> N nu nu over bar . We find that for proto-neutron stars, such processes with degenerate neutrons can be comparable and even dominate over the typical and well-known cooling mechanisms.
Address [Chakraborty, Sabyasachi] Indian Inst Technol, Dept Phys, Kanpur 208016, India, Email: sabyac@iitk.ac.in;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001116545800007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5872
Permanent link to this record
 

 
Author Han, C.; Lopez-Ibañez, M.L.; Melis, A.; Vives, O.; Yang, J.M.
Title (up) Anomaly-free ALP from non-Abelian flavor symmetry Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 306 - 21pp
Keywords Axions and ALPs; Flavour Symmetries; Lepton Flavour Violation (charged)
Abstract Motivated by the XENON1T excess in electron-recoil measurements, we investigate the prospects of probing axion-like particles (ALP) in lepton flavor violation experiments. In particular, we identify such ALP as a pseudo-Goldstone from the spontaneous breaking of the flavor symmetries that explain the mixing structure of the Standard Model leptons. We present the case of the flavor symmetries being a non-Abelian U(2) and the ALP originating from its U(1) subgroup, which is anomaly-free with the Standard Model group. We build two explicit realistic examples that reproduce leptonic masses and mixings and show that the ALP which is consistent with XENON1T anomaly could be probed by the proposed LFV experiments.
Address [Han, C.] Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Peoples R China, Email: hanchch@mail.sysu.edu.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000848742400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5348
Permanent link to this record
 

 
Author Fileviez Perez, P.; Golias, E.; Li, R.H.; Murgui, C.; Plascencia, A.D.
Title (up) Anomaly-free dark matter models Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 1 Pages 015017 - 15pp
Keywords
Abstract We investigate the predictions of anomaly-free dark matter models for direct and indirect detection experiments. We focus on gauge theories where the existence of a fermionic dark matter candidate is predicted by anomaly cancellation, its mass is defined by the new symmetry breaking scale, and its stability is guaranteed by a remnant symmetry after the breaking of the gauge symmetry. We find an upper bound on the symmetry breaking scale by applying the relic density and perturbative constraints. The anomaly-free property of the theories allows us to perform a full study of the gamma lines from dark matter annihilation. We investigate the correlation between predictions for final-state radiation processes and gamma lines. Furthermore, we demonstrate that the latter can be distinguished from the continuum gamma-ray spectrum.
Address [Fileviez Perez, Pavel; Golias, Elliot; Li, Rui-Hao; Plascencia, Alexis D.] Case Western Reserve Univ, Dept Phys, Rockefeller Bldg,2076 Adelbert Rd, Cleveland, OH 44106 USA, Email: pxf112@case.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000475507300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4094
Permanent link to this record